/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor_util.h" #include "glog/logging.h" namespace paddle { namespace framework { // Vector implements the std::vector interface, and can get Data or // MutableData from any place. The data will be synced implicitly inside. template class Vector { public: using value_type = T; // Default ctor. Create empty Vector Vector() { InitEmpty(); } // Fill vector with value. The vector size is `count`. explicit Vector(size_t count, const T& value = T()) { InitEmpty(); if (count != 0) { resize(count); T* ptr = begin(); for (size_t i = 0; i < count; ++i) { ptr[i] = value; } } } // Ctor with init_list Vector(std::initializer_list init) { if (init.size() == 0) { InitEmpty(); } else { InitByIter(init.size(), init.begin(), init.end()); } } // implicit cast from std::vector. template Vector(const std::vector& dat) { // NOLINT if (dat.size() == 0) { InitEmpty(); } else { InitByIter(dat.size(), dat.begin(), dat.end()); } } // Copy ctor Vector(const Vector& other) { this->operator=(other); } // Copy operator Vector& operator=(const Vector& other) { if (other.size() != 0) { this->InitByIter(other.size(), other.begin(), other.end()); } else { InitEmpty(); } return *this; } // Move ctor Vector(Vector&& other) { this->size_ = other.size_; this->flag_ = other.flag_; if (other.cuda_vec_.memory_size()) { this->cuda_vec_.ShareDataWith(other.cuda_vec_); } if (other.cpu_vec_.memory_size()) { this->cpu_vec_.ShareDataWith(other.cpu_vec_); } } // CPU data access method. Mutable. T& operator[](size_t i) { MutableCPU(); return const_cast(cpu_vec_.data())[i]; } // CPU data access method. Immutable. const T& operator[](size_t i) const { ImmutableCPU(); return cpu_vec_.data()[i]; } // std::vector iterator methods. Based on CPU data access method size_t size() const { return size_; } T* begin() { return capacity() == 0 ? &EmptyDummy() : &this->operator[](0); } T* end() { return capacity() == 0 ? &EmptyDummy() : &this->operator[](size()); } T& front() { return *begin(); } T& back() { auto it = end(); --it; return *it; } const T* begin() const { return capacity() == 0 ? &EmptyDummy() : &this->operator[](0); } const T* end() const { return capacity() == 0 ? &EmptyDummy() : &this->operator[](size()); } const T* cbegin() const { return begin(); } const T* cend() const { return end(); } const T& back() const { auto it = end(); --it; return *it; } T* data() { return begin(); } const T* data() const { return begin(); } const T& front() const { return *begin(); } // end of std::vector iterator methods // assign this from iterator. // NOTE: the iterator must support `end-begin` template void assign(Iter begin, Iter end) { InitByIter(end - begin, begin, end); } // push_back. If the previous capacity is not enough, the memory will // double. void push_back(T elem) { if (size_ + 1 > capacity()) { reserve((size_ + 1) << 1); } *end() = elem; ++size_; } // extend a vector by iterator. // NOTE: the iterator must support end-begin template void Extend(It begin, It end) { size_t pre_size = size_; resize(pre_size + (end - begin)); T* ptr = this->begin() + pre_size; for (; begin < end; ++begin, ++ptr) { *ptr = *begin; } } // resize the vector void resize(size_t size) { if (size + 1 < capacity()) { size_ = size; } else { MutableCPU(); Tensor cpu_tensor; platform::Place cpu = platform::CPUPlace(); T* ptr = cpu_tensor.mutable_data( framework::make_ddim({static_cast(size)}), cpu); const T* old_ptr = cpu_vec_.memory_size() == 0 ? nullptr : cpu_vec_.data(); if (old_ptr != nullptr) { std::copy(old_ptr, old_ptr + size_, ptr); } size_ = size; cpu_vec_.ShareDataWith(cpu_tensor); } } // get cuda ptr. immutable const T* CUDAData(platform::Place place) const { PADDLE_ENFORCE(platform::is_gpu_place(place), "CUDA Data must on CUDA place"); ImmutableCUDA(place); return cuda_vec_.data(); } // get cuda ptr. mutable T* CUDAMutableData(platform::Place place) { const T* ptr = CUDAData(place); flag_ = kDirty | kDataInCUDA; return const_cast(ptr); } // clear void clear() { size_ = 0; flag_ = kDirty | kDataInCPU; } size_t capacity() const { return cpu_vec_.memory_size() / SizeOfType(typeid(T)); } // reserve data void reserve(size_t size) { size_t pre_size = size_; resize(size); resize(pre_size); } // the unify method to access CPU or CUDA data. immutable. const T* Data(platform::Place place) const { if (platform::is_gpu_place(place)) { return CUDAData(place); } else { return data(); } } // the unify method to access CPU or CUDA data. mutable. T* MutableData(platform::Place place) { if (platform::is_gpu_place(place)) { return CUDAMutableData(place); } else { return data(); } } // implicit cast operator. Vector can be cast to std::vector implicitly. operator std::vector() const { std::vector result; result.resize(size()); std::copy(begin(), end(), result.begin()); return result; } bool operator==(const Vector& other) const { if (size() != other.size()) return false; auto it1 = cbegin(); auto it2 = other.cbegin(); for (; it1 < cend(); ++it1, ++it2) { if (*it1 != *it2) { return false; } } return true; } private: void InitEmpty() { size_ = 0; flag_ = kDataInCPU; } template void InitByIter(size_t size, Iter begin, Iter end) { platform::Place cpu = platform::CPUPlace(); T* ptr = this->cpu_vec_.template mutable_data( framework::make_ddim({static_cast(size)}), cpu); for (size_t i = 0; i < size; ++i) { *ptr++ = *begin++; } flag_ = kDataInCPU | kDirty; size_ = size; } enum DataFlag { kDataInCPU = 0x01, kDataInCUDA = 0x02, // kDirty means the data has been changed in one device. kDirty = 0x10 }; void CopyToCPU() const { // COPY GPU Data To CPU TensorCopy(cuda_vec_, platform::CPUPlace(), &cpu_vec_); WaitPlace(cuda_vec_.place()); } void MutableCPU() { if (IsInCUDA() && IsDirty()) { CopyToCPU(); } flag_ = kDirty | kDataInCPU; } void ImmutableCUDA(platform::Place place) const { if (IsDirty()) { if (IsInCPU()) { TensorCopy(cpu_vec_, boost::get(place), &cuda_vec_); WaitPlace(place); UnsetFlag(kDirty); SetFlag(kDataInCUDA); } else if (IsInCUDA() && !(place == cuda_vec_.place())) { framework::Tensor tmp; TensorCopy(cuda_vec_, boost::get(place), &tmp); WaitPlace(cuda_vec_.place()); cuda_vec_.ShareDataWith(tmp); // Still dirty } else { // Dirty && DataInCUDA && Device is same // Do nothing } } else { if (!IsInCUDA()) { // Even data is not dirty. However, data is not in CUDA. Copy data. TensorCopy(cpu_vec_, boost::get(place), &cuda_vec_); WaitPlace(place); SetFlag(kDataInCUDA); } else if (!(place == cuda_vec_.place())) { framework::Tensor tmp; WaitPlace(cuda_vec_.place()); TensorCopy(cuda_vec_, boost::get(place), &tmp); WaitPlace(cuda_vec_.place()); WaitPlace(place); cuda_vec_.ShareDataWith(tmp); } else { // Not Dirty && DataInCUDA && Device is same // Do nothing. } } } void ImmutableCPU() const { if (IsDirty() && !IsInCPU()) { // If data has been changed in CUDA, or CPU has no data. CopyToCPU(); UnsetFlag(kDirty); } SetFlag(kDataInCPU); } void UnsetFlag(int flag) const { flag_ &= ~flag; } void SetFlag(int flag) const { flag_ |= flag; } bool IsDirty() const { return flag_ & kDirty; } bool IsInCUDA() const { return flag_ & kDataInCUDA; } bool IsInCPU() const { return flag_ & kDataInCPU; } static void WaitPlace(const platform::Place place) { if (platform::is_gpu_place(place)) { platform::DeviceContextPool::Instance() .Get(boost::get(place)) ->Wait(); } } static T& EmptyDummy() { static T dummy = T(); return dummy; } mutable int flag_; mutable Tensor cpu_vec_; mutable Tensor cuda_vec_; size_t size_; }; } // namespace framework } // namespace paddle