# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nets import mlp from utils import gen_data import paddle.fluid as fluid from paddle.fluid.incubate.fleet.base import role_maker from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import ( fleet, ) input_x = fluid.layers.data(name="x", shape=[32], dtype='float32') input_y = fluid.layers.data(name="y", shape=[1], dtype='int64') input_y = fluid.layers.cast(input_y, dtype="float32") with fluid.device_guard("gpu"): input_y = fluid.layers.cast(input_y, dtype="int64") cost = mlp(input_x, input_y) optimizer = fluid.optimizer.Adagrad(learning_rate=0.01) role = role_maker.PaddleCloudRoleMaker() fleet.init(role) optimizer = fleet.distributed_optimizer(optimizer) optimizer.minimize(cost) if fleet.is_server(): fleet.init_server() fleet.run_server() elif fleet.is_worker(): place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fleet.startup_program) step = 1001 for i in range(step): cost_val = exe.run( program=fleet.main_program, feed=gen_data(), fetch_list=[cost.name] ) print( "worker_index: %d, step%d cost = %f" % (fleet.worker_index(), i, cost_val[0]) )