/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/fluid/framework/tensor.h" namespace paddle { namespace operators { namespace math { /** * The most common im2col algorithm. * Support dilation, stride and padding. */ template inline void im2col_common(const framework::Tensor& im, const std::vector& dilation, const std::vector& stride, const std::vector& padding, framework::Tensor* col, const DataLayout data_layout = DataLayout::kNCHW) { int im_channels = (data_layout == DataLayout::kNCHW ? im.dims()[0] : im.dims()[2]); int im_height = (data_layout == DataLayout::kNCHW ? im.dims()[1] : im.dims()[0]); int im_width = (data_layout == DataLayout::kNCHW ? im.dims()[2] : im.dims()[1]); int filter_height = col->dims()[1]; int filter_width = col->dims()[2]; int output_height = col->dims()[3]; int output_width = col->dims()[4]; int channels_col = im_channels * filter_height * filter_width; const T* im_data = im.data(); T* col_data = col->data(); for (int c = 0; c < channels_col; ++c) { int w_offset = c % filter_width; int h_offset = (c / filter_width) % filter_height; int c_im = c / (filter_width * filter_height); for (int h = 0; h < output_height; ++h) { int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0]; for (int w = 0; w < output_width; ++w) { int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1]; int im_idx; if (data_layout == DataLayout::kNCHW) { im_idx = (im_row_idx + c_im * im_height) * im_width + im_col_idx; } else { im_idx = (im_row_idx * im_width + im_col_idx) * im_channels + c_im; } int col_idx = (c * output_height + h) * output_width + w; col_data[col_idx] = (im_row_idx < 0 || im_row_idx >= im_height || im_col_idx < 0 || im_col_idx >= im_width) ? static_cast(0) : im_data[im_idx]; } } } } /** * im2col algorithm with strides == 1, dilations == 1, paddings == 0 */ template inline void im2col_sh1sw1dh1dw1ph0pw0( const framework::Tensor& im, framework::Tensor* col, const DataLayout data_layout = DataLayout::kNCHW) { int im_channels = (data_layout == DataLayout::kNCHW ? im.dims()[0] : im.dims()[2]); int im_height = (data_layout == DataLayout::kNCHW ? im.dims()[1] : im.dims()[0]); int im_width = (data_layout == DataLayout::kNCHW ? im.dims()[2] : im.dims()[1]); int filter_height = col->dims()[1]; int filter_width = col->dims()[2]; int output_height = col->dims()[3]; int output_width = col->dims()[4]; const T* im_data = im.data(); T* col_data = col->data(); int col_matrix_width = output_width * output_height; int im_size = im_height * im_width; size_t copy_size = sizeof(T) * output_width; const T* im_data_oh = im_data; T* dst_data_oh = col_data; for (int oh = 0; oh < output_height; ++oh) { const T* src_data_ic = im_data_oh; T* dst_data = dst_data_oh; for (int ic = 0; ic < im_channels; ++ic) { const T* src_data = src_data_ic; for (int kh = 0; kh < filter_height; ++kh) { for (int kw = 0; kw < filter_width; ++kw) { if (data_layout == DataLayout::kNCHW) { std::memcpy(dst_data, src_data + kw, copy_size); } else { for (int kow = 0; kow < output_width; ++kow) { dst_data[kow] = im_data[((oh + kh) * im_width + kw + kow) * im_channels + ic]; } } dst_data = dst_data + col_matrix_width; } src_data = src_data + im_width; } src_data_ic = src_data_ic + im_size; } im_data_oh = im_data_oh + im_width; dst_data_oh = dst_data_oh + output_width; } } /** * im2col algorithm with strides == 1, dilations == 1, paddings == 1 * and filter_width == 1 have a special implementation */ template inline void im2col_sh1sw1dh1dw1ph1pw1(const framework::Tensor& im, framework::Tensor* col, const DataLayout data_layout) { int im_channels = (data_layout == DataLayout::kNCHW ? im.dims()[0] : im.dims()[2]); int im_height = (data_layout == DataLayout::kNCHW ? im.dims()[1] : im.dims()[0]); int im_width = (data_layout == DataLayout::kNCHW ? im.dims()[2] : im.dims()[1]); int filter_height = col->dims()[1]; int filter_width = col->dims()[2]; int output_height = col->dims()[3]; int output_width = col->dims()[4]; constexpr int plh = 1; constexpr int prh = 1; constexpr int plw = 1; constexpr int prw = 1; const T* im_data = im.data(); T* col_data = col->data(); int im_size = im_height * im_width; int col_matrix_width = output_width * output_height; int col_block_fh = filter_width * col_matrix_width; // fw*oh*ow int col_block_ic = filter_height * col_block_fh; // fh*fw*oh*ow // fill height padding { size_t copy_size = sizeof(T) * output_width; T* col_start_l = col_data; T* col_start_r = col_data + (filter_height - 1) * col_block_fh + col_matrix_width - output_width; for (int ic = 0; ic < im_channels; ++ic) { T* dst_data_l = col_start_l; T* dst_data_r = col_start_r; for (int kw = 0; kw < filter_width; ++kw) { std::memset(dst_data_l, 0, copy_size); std::memset(dst_data_r, 0, copy_size); dst_data_l = dst_data_l + col_matrix_width; dst_data_r = dst_data_r + col_matrix_width; } col_start_l = col_start_l + col_block_ic; col_start_r = col_start_r + col_block_ic; } } auto pad = static_cast(0); if (filter_width == 1) { // fill width padding T* dst_data_ic = col_data; for (int ic = 0; ic < im_channels; ++ic) { T* dst_data_kh = dst_data_ic; for (int kh = 0; kh < filter_height; ++kh) { T* dst_data = dst_data_kh; for (int oh = 0; oh < output_height; ++oh) { *dst_data = pad; dst_data = dst_data + output_width - 1; *dst_data = pad; ++dst_data; } dst_data_kh = dst_data_kh + col_block_fh; } dst_data_ic = dst_data_ic + col_block_ic; } // fill core size_t copy_size = sizeof(T) * (output_width - plw - prw); for (int oh = 0; oh < output_height; ++oh) { const T* im_data_start = im_data + (oh - plh > 0 ? oh - plh : 0) * im_width; T* dst_data = col_data + oh * output_width; for (int ic = 0; ic < im_channels; ++ic) { const T* src_data = im_data_start + ic * im_size; for (int kh = 0; kh < filter_height; ++kh) { if ((oh < plh && kh < plh) || (oh > (output_height - prh - 1) && kh > (filter_height - prh - 1))) { dst_data = dst_data + col_matrix_width; continue; } if (data_layout == DataLayout::kNCHW) { std::memcpy(dst_data + plw, src_data, copy_size); } else { for (int kow = 0; kow < output_width - plw - prw; ++kow) { dst_data[plw + kow] = im_data[(((oh - plh > 0 ? oh - plh : 0) + kh) * im_width + kow) * im_channels + ic]; } } dst_data = dst_data + col_matrix_width; src_data = src_data + im_width; } } } return; } // filter_width != 1 // fill width padding T* dst_data_ic = col_data; for (int ic = 0; ic < im_channels; ++ic) { T* dst_data_kh = dst_data_ic; for (int kh = 0; kh < filter_height; ++kh) { for (T* dst_data : {dst_data_kh, dst_data_kh + (filter_width - prw) * col_matrix_width + output_width - 1}) { // TODO(TJ): from plh, saving repeated assignment for (int oh = 0; oh < output_height; ++oh) { *dst_data = pad; dst_data = dst_data + output_width; } } dst_data_kh = dst_data_kh + col_block_fh; } dst_data_ic = dst_data_ic + col_block_ic; } // TODO(TJ): use array like: size_t copy_size[kw]={sizeof(T) * // (output_width-1)} // length of copy_size is equal kw. for (int oh = 0; oh < output_height; ++oh) { const T* im_data_start = im_data + (oh - plh > 0 ? oh - plh : 0) * im_width; T* dst_data = col_data + oh * output_width; for (int ic = 0; ic < im_channels; ++ic) { const T* src_data = im_data_start + ic * im_size; for (int kh = 0; kh < filter_height; ++kh) { if ((oh < plh && kh < plh) || (oh > (output_height - prh - 1) && kh > (filter_height - prh - 1))) { dst_data = dst_data + filter_width * col_matrix_width; continue; } // TODO(TJ): reuse plw-kw outside this for // try to unify for (int kw = 0; kw < plw; ++kw) { if (data_layout == DataLayout::kNCHW) { std::memcpy(dst_data + (plw - kw), src_data, sizeof(T) * (output_width - (plw - kw))); } else { for (int kow = 0; kow < output_width - (plw - kw); ++kow) { dst_data[plw - kw + kow] = im_data[(((oh - plh > 0 ? oh - plh : 0) + kh) * im_width + kow) * im_channels + ic]; } } dst_data = dst_data + col_matrix_width; } for (int kw = plw; kw < filter_width - prw; ++kw) { if (data_layout == DataLayout::kNCHW) { std::memcpy(dst_data, src_data + (kw - plw), sizeof(T) * output_width); } else { for (int kow = 0; kow < output_width; ++kow) { dst_data[kow] = im_data[(((oh - plh > 0 ? oh - plh : 0) + kh) * im_width + kw - plw + kow) * im_channels + ic]; } } dst_data = dst_data + col_matrix_width; } int i = 1; for (int kw = filter_width - prw; kw < filter_width; ++kw, ++i) { if (data_layout == DataLayout::kNCHW) { std::memcpy(dst_data, src_data + (kw - plw), sizeof(T) * (output_width - i)); } else { for (int kow = 0; kow < output_width - i; ++kow) { dst_data[kow] = im_data[(((oh - plh > 0 ? oh - plh : 0) + kh) * im_width + kw - plw + kow) * im_channels + ic]; } } dst_data = dst_data + col_matrix_width; } src_data = src_data + im_width; } } } } } // namespace math } // namespace operators } // namespace paddle