/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/infermeta/unary.h" #include #include #include "paddle/fluid/framework/convert_utils.h" #include "paddle/phi/common/data_type.h" #include "paddle/phi/common/type_traits.h" #include "paddle/phi/core/enforce.h" #include "paddle/phi/core/infermeta_utils.h" #include "paddle/phi/kernels/funcs/parse_qr_mode.h" #include "paddle/phi/kernels/funcs/pooling.h" #include "paddle/phi/kernels/funcs/slice_utils.h" #include "paddle/phi/kernels/funcs/strided_slice.h" #include "paddle/phi/kernels/funcs/unfold_functor.h" #include "paddle/phi/kernels/funcs/unsqueeze.h" #include "paddle/phi/kernels/impl/einsum_impl.h" namespace phi { namespace detail { // Used in MatrixRankInferMeta static DDim CheckAndGetOutputDim(const DDim& dim_x) { auto x_vec = phi::vectorize(dim_x); if (x_vec.size() == 2) { return phi::make_ddim({1}); } x_vec.erase(x_vec.end() - 2, x_vec.end()); return phi::make_ddim(x_vec); } } // namespace detail void ArgMinMaxInferMeta(const MetaTensor& x, int64_t axis, bool keepdims, bool flatten, int dtype, MetaTensor* out, MetaConfig config) { const auto& x_dims = x.dims(); PADDLE_ENFORCE_GE( axis, -x_dims.size(), phi::errors::InvalidArgument("'axis'(%d) must be greater than or equal to" " -Rank(X)(%d).", axis, -x_dims.size())); PADDLE_ENFORCE_LT(axis, x_dims.size(), phi::errors::InvalidArgument( "'axis'(%d) must be less than Rank(X)(%d) of Input(X).", axis, x_dims.size())); PADDLE_ENFORCE_EQ( (dtype < 0 || dtype == 2 || dtype == 3), true, phi::errors::InvalidArgument( "The attribute of dtype in argmin/argmax must be [%s] or [%s], but " "received [%s]", paddle::framework::DataTypeToString( paddle::framework::proto::VarType::INT32), paddle::framework::DataTypeToString( paddle::framework::proto::VarType::INT64), paddle::framework::DataTypeToString( static_cast(dtype)))); auto x_rank = x_dims.size(); if (axis < 0) axis += x_rank; if (config.is_runtime) { if (dtype == paddle::framework::proto::VarType::INT32) { int64_t all_element_num = 0; if (flatten) { all_element_num = phi::product(x_dims); } else { all_element_num = x_dims[axis]; } PADDLE_ENFORCE_LE( all_element_num, INT_MAX, phi::errors::InvalidArgument( "The element num of the argmin/argmax input at axis is " "%d, is larger than int32 maximum value:%d, you must " "set the dtype of argmin/argmax to 'int64'.", all_element_num, INT_MAX)); } } std::vector vec; if (flatten) { vec.emplace_back(static_cast(1)); } else { for (int64_t i = 0; i < axis; i++) vec.emplace_back(x_dims[i]); if (keepdims) { vec.emplace_back(static_cast(1)); } for (int64_t i = axis + 1; i < x_rank; i++) vec.emplace_back(x_dims[i]); } out->set_dims(phi::make_ddim(vec)); if (dtype == 2) { out->set_dtype(DataType::INT32); } else if (dtype == 3) { out->set_dtype(DataType::INT64); } } void ArgsortInferMeta(const MetaTensor& input, int axis, bool descending, MetaTensor* output, MetaTensor* indices) { auto in_dims = input.dims(); auto num_dims = in_dims.size(); PADDLE_ENFORCE_GE( axis, -num_dims, phi::errors::InvalidArgument("'axis'(%d) must be greater than or equal to" " -num_dims(%d).", axis, -num_dims)); PADDLE_ENFORCE_LT( axis, num_dims, phi::errors::InvalidArgument( "'axis'(%d) must be less than num_dims(%d).", axis, num_dims)); output->share_dims(input); output->set_dtype(input.dtype()); indices->share_dims(input); indices->set_dtype(DataType::INT64); output->share_lod(input); indices->share_lod(input); } void AsRealInferMeta(const MetaTensor& input, MetaTensor* output) { auto out_dims_v = phi::vectorize(input.dims()); out_dims_v.push_back(2); auto out_dims = phi::make_ddim(out_dims_v); output->set_dims(out_dims); output->share_lod(input); } void AsComplexInferMeta(const MetaTensor& input, MetaTensor* output) { auto in_dims = input.dims(); const int input_rank = in_dims.size(); PADDLE_ENFORCE_GE( input_rank, 1, phi::errors::InvalidArgument( "The rank of input(X) is less than 1. " "Expected the rank of input(X) to be equal to or greater than 1." "But received rank of input(X) = %d", input_rank)); const int last_dim_size = in_dims[input_rank - 1]; PADDLE_ENFORCE_EQ( last_dim_size, 2, phi::errors::InvalidArgument( "The size of the last dimension of input(X)" "does not equals 2." "Expected the size of last dimension of input(X) to be 2." "But received %d", last_dim_size)); const phi::DDim out_dims(in_dims.Get(), input_rank - 1); output->set_dims(out_dims); output->share_lod(input); } void BatchSizeLikeInferMeta(const MetaTensor& x, const std::vector& shape, int x_batch_size_dim, int out_batch_size_dim, MetaTensor* out) { PADDLE_ENFORCE_GT( shape.size(), 0UL, phi::errors::InvalidArgument( "Shape size must be larger than 0, but received: %s.", shape.size())); std::vector shape_int64(shape.size(), 0); std::transform(shape.begin(), shape.end(), shape_int64.begin(), [](int a) { return static_cast(a); }); auto output_dim = phi::make_ddim(shape_int64); int input_dim_size = static_cast(x.dims().size()); PADDLE_ENFORCE_GE( x_batch_size_dim, 0, phi::errors::InvalidArgument("Input dimension index must be larger " "equal than 0, but received: %s.", x_batch_size_dim)); PADDLE_ENFORCE_GT(input_dim_size, x_batch_size_dim, phi::errors::InvalidArgument( "Input dimension size must be larger than " "input dimension index, but received input " "dimension size: %s, input dimension index: %s.", input_dim_size, x_batch_size_dim)); int output_dim_size = static_cast(shape.size()); PADDLE_ENFORCE_GE( out_batch_size_dim, 0, phi::errors::InvalidArgument("Output dimension index must be larger " "equal than 0, but received: %s.", out_batch_size_dim)); PADDLE_ENFORCE_GT( output_dim_size, out_batch_size_dim, phi::errors::InvalidArgument( "Output dimension size must be larger than output dimension index, " "but received output dimension size: %s, output dimension index: " "%s.", output_dim_size, out_batch_size_dim)); output_dim[out_batch_size_dim] = x.dims()[x_batch_size_dim]; out->set_dims(output_dim); } void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out) { out->set_dims(x.dims()); out->set_dtype(out_dtype); out->set_layout(x.layout()); } void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out) { auto dims = x.dims(); auto rank = dims.size(); PADDLE_ENFORCE_GE(rank, 2, errors::InvalidArgument( "The Input(X) should have at least 2 dimensions. But " "received a %d dimension tensor.", rank)); PADDLE_ENFORCE_EQ( dims[rank - 2], dims[rank - 1], errors::InvalidArgument( "The inner-most 2 dimensions of Input(X) all should be symmetric " "positive-definite matrices and have the same size. But received " "X's shape[-2] = %d and shape[-1] = %d.", dims[rank - 2], dims[rank - 1])); out->set_dims(x.dims()); out->set_dtype(x.dtype()); } void ClipByNormInferMeta(const MetaTensor& x, float max_norm, MetaTensor* out) { PADDLE_ENFORCE_GT( max_norm, 0, phi::errors::InvalidArgument("max_norm should be greater than 0. " "Received max_norm is %f.", max_norm)); out->set_dims(x.dims()); out->set_dtype(x.dtype()); out->share_lod(x); } void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out) { out->set_dims(x.dims()); out->set_dtype(dtype == DataType::UNDEFINED ? x.dtype() : dtype); out->set_layout(x.layout()); } void CumInferMeta(const MetaTensor& x, int axis, bool flatten, bool exclusive, bool reverse, MetaTensor* out) { auto x_dims = x.dims(); if (flatten) { out->set_dims(phi::make_ddim({phi::product(x_dims)})); out->set_dtype(x.dtype()); } else { out->set_dims(x_dims); out->set_dtype(x.dtype()); } out->share_lod(x); } void CropTensorInferMeta(const MetaTensor& x, const IntArray& shape, const IntArray& offsets, MetaTensor* out, MetaConfig config) { PADDLE_ENFORCE_NE( out, nullptr, errors::InvalidArgument("CropTensor should have output tensor out.")); auto x_dim = x.dims(); auto shape_dims = shape.GetData(); auto offsets_vec = offsets.GetData(); PADDLE_ENFORCE_EQ(shape_dims.size(), x_dim.size(), errors::InvalidArgument( "The number of elements (%d) of attribute 'shape' for " "CropTensor must be equal to the number of " "dimensions (%d) of the input.", shape_dims.size(), x_dim.size())); if (config.is_runtime) { out->share_lod(x); } auto out_dims = std::vector(shape.size(), -1); for (size_t i = 0; i < shape_dims.size(); ++i) { if (shape_dims[i] > 0) { out_dims[i] = static_cast(shape_dims[i]); } else { if (shape_dims[i] == -1 && offsets_vec[i] != -1 && x_dim[i] != -1) { out_dims[i] = x_dim[i] - static_cast(offsets_vec[i]); } } } out->set_dims(phi::make_ddim(out_dims)); out->set_dtype(x.dtype()); } void DiagEmbedInferMeta( const MetaTensor& x, int offset, int dim1, int dim2, MetaTensor* out) { auto x_dims = x.dims(); PADDLE_ENFORCE_GE( dim1, -(x_dims.size() + 1), phi::errors::OutOfRange( "Dim1 is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size() + 1), x_dims.size(), dim1)); PADDLE_ENFORCE_LE( dim1, x_dims.size(), phi::errors::OutOfRange( "Dim1 is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size() + 1), x_dims.size(), dim1)); PADDLE_ENFORCE_GE( dim2, -(x_dims.size() + 1), phi::errors::OutOfRange( "Dim2 is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size() + 1), x_dims.size(), dim2)); PADDLE_ENFORCE_LE( dim2, x_dims.size(), phi::errors::OutOfRange( "Dim2 is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size() + 1), x_dims.size(), dim2)); int dim1_ = dim1 < 0 ? x_dims.size() + dim1 + 1 : dim1; int dim2_ = dim2 < 0 ? x_dims.size() + dim2 + 1 : dim2; int offset_ = std::abs(offset); PADDLE_ENFORCE_NE(dim1_, dim2_, phi::errors::InvalidArgument( "diagonal dimensions should not be identical " "%ld vs %ld.", dim1, dim2)); int new_dim_len = offset_ + x_dims[x_dims.size() - 1]; auto sizes = vectorize(x_dims); sizes.pop_back(); sizes.insert(sizes.begin() + std::min(dim1_, dim2_), new_dim_len); sizes.insert(sizes.begin() + std::max(dim1_, dim2_), new_dim_len); out->set_dims(phi::make_ddim(sizes)); out->set_dtype(x.dtype()); } void DiagInferMeta(const MetaTensor& x, int offset, float padding_value, MetaTensor* out) { auto x_dims = x.dims(); if (x_dims.size() == 1UL) { int64_t size_ = x_dims[0] + std::abs(offset); out->set_dims({size_, size_}); out->set_dtype(x.dtype()); } else if (x_dims.size() == 2UL) { int64_t size_ = 0; if (offset >= 0) { // Note(LutaoChu): Do not use std::min here, otherwise the calculation // of `size_` will have unexpected result on Windows Python3.8 if (x_dims[0] < x_dims[1] - offset) { size_ = x_dims[0]; } else { size_ = x_dims[1] - offset; } } else { // Note(LutaoChu): Do not use std::min here, otherwise the calculation // of `size_` will have unexpected result on Windows Python3.8 if (x_dims[0] + offset < x_dims[1]) { size_ = x_dims[0] + offset; } else { size_ = x_dims[1]; } } out->set_dims({size_}); out->set_dtype(x.dtype()); } else { PADDLE_THROW(phi::errors::InvalidArgument( "The input tensor X's dimensions of DiagV2Op should be either 1 or " "2, but received %d.", x_dims.size())); } } void DiagonalInferMeta(const MetaTensor& input, int offset, int axis1, int axis2, MetaTensor* out) { auto x_dims = input.dims(); int offset_ = offset; int axis1_ = axis1 < 0 ? x_dims.size() + axis1 : axis1; int axis2_ = axis2 < 0 ? x_dims.size() + axis2 : axis2; PADDLE_ENFORCE_GE( x_dims.size(), 2, phi::errors::OutOfRange("Input's dim is out of range (expected at " "least 2 dimensions, but got %ld).", x_dims.size())); PADDLE_ENFORCE_LT( axis1_, x_dims.size(), phi::errors::OutOfRange( "Attr(axis1) is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size()), (x_dims.size() - 1), axis1)); PADDLE_ENFORCE_LT( axis2_, x_dims.size(), phi::errors::OutOfRange( "Attr(axis2) is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size()), (x_dims.size() - 1), axis2)); PADDLE_ENFORCE_NE( axis1_, axis2_, phi::errors::InvalidArgument("The dimensions should not be identical " "%d vs %d.", axis1, axis2)); auto out_dims = vectorize(x_dims); // from out_dims get the dim size of axis1_. auto axis1_size = out_dims[axis1_]; auto axis2_size = out_dims[axis2_]; // delete two dims by attr axis1 and axis2 from out_dims. /* example: out_dim = [2, 3, 4]; axis1 = 0; axis2 = 1; according to the attr of axis1 and axis2, we get: out_dim = [4]. */ out_dims.erase(out_dims.begin() + std::max(axis1_, axis2_)); out_dims.erase(out_dims.begin() + std::min(axis1_, axis2_)); if (offset_ == 0) { out_dims.push_back(std::min(axis1_size, axis2_size)); } else if (offset_ > 0) { if ((axis2_size - offset_) > 0) { out_dims.push_back(std::min(axis1_size, axis2_size - offset_)); } else { out_dims.push_back(0); } } else { if ((axis1_size + offset_) > 0) { out_dims.push_back(std::min(axis1_size + offset_, axis2_size)); } else { out_dims.push_back(0); } } out->set_dims(phi::make_ddim(out_dims)); } void DirichletInferMeta(const MetaTensor& alpha, MetaTensor* out) { const auto alpha_dim = alpha.dims(); PADDLE_ENFORCE_GE(alpha_dim.size(), 1, phi::errors::InvalidArgument( "ShapeError: The number of dimensions of 'Alpha' " "must be greater than or euqal to 1. " "But received Alpha's dimensions = %d,", alpha_dim.size())); out->set_dims(alpha_dim); out->set_dtype(alpha.dtype()); } void EigInferMeta(const MetaTensor& x, MetaTensor* out_w, MetaTensor* out_v) { auto x_dims = x.dims(); int rank = x_dims.size(); PADDLE_ENFORCE_GE( rank, 2, phi::errors::InvalidArgument("Expects input tensor x to be not less than " "2 dimentions, but got dimention %d", rank)); PADDLE_ENFORCE_EQ(x_dims[rank - 2], x_dims[rank - 1], phi::errors::InvalidArgument( "The input matrix must be a square matrix, " "but receive a matrix with %d rows and %d colums", x_dims[rank - 2], x_dims[rank - 1])); std::vector batch_dims_vec{}; for (int i = 0; i < rank - 1; ++i) { batch_dims_vec.emplace_back(x_dims[i]); } out_w->set_dims(phi::make_ddim(batch_dims_vec)); out_v->set_dims(x_dims); } void EighInferMeta(const MetaTensor& x, const std::string& uplo, MetaTensor* out_w, MetaTensor* out_v) { auto input_dim = x.dims(); auto rank = input_dim.size(); PADDLE_ENFORCE_GE(rank, 2, phi::errors::InvalidArgument( "The Input(X) should have at least 2 dimensions." "But received a %d dimension tensor.", rank)); PADDLE_ENFORCE_EQ( input_dim[rank - 2], input_dim[rank - 1], phi::errors::InvalidArgument( "Eigh op is designed for square matrix, consequently" "inner-most 2 dimensions of Input(X) should be symmetric." "But received X's shape[-2] = %d and shape[-1] = %d.", input_dim[rank - 2], input_dim[rank - 1])); std::vector values_dim; for (auto i = 0; i < rank - 1; i++) { values_dim.emplace_back(input_dim[i]); } out_w->set_dims(phi::make_ddim(values_dim)); out_v->set_dims(input_dim); } void EigvalsInferMeta(const MetaTensor& x, MetaTensor* out, MetaConfig config) { auto x_dims = x.dims(); PADDLE_ENFORCE_GE(x_dims.size(), 2, errors::InvalidArgument( "The dimensions of Input(X) for Eigvals operator " "should be at least 2, " "but received X's dimension = %d, X's shape = [%s].", x_dims.size(), x_dims)); if (config.is_runtime || !phi::contain_unknown_dim(x_dims)) { int last_dim = x_dims.size() - 1; PADDLE_ENFORCE_EQ(x_dims[last_dim], x_dims[last_dim - 1], errors::InvalidArgument( "The last two dimensions of Input(X) for Eigvals " "operator should be equal, " "but received X's shape = [%s].", x_dims)); } auto out_dims = vectorize(x_dims); out_dims.resize(x_dims.size() - 1); const DataType& x_dtype = x.dtype(); const DataType& out_dtype = IsComplexType(x_dtype) ? x_dtype : ToComplexType(x_dtype); out->set_dims(make_ddim(out_dims)); out->set_dtype(out_dtype); } void EigvalshInferMeta(const MetaTensor& x, const std::string& uplo, bool is_test, MetaTensor* out_w, MetaTensor* out_v) { auto input_dim = x.dims(); auto rank = input_dim.size(); PADDLE_ENFORCE_GE( rank, 2, errors::InvalidArgument("The Input(X) should have at least 2 dimensions." "But received a %d dimension tensor.", rank)); PADDLE_ENFORCE_EQ( input_dim[rank - 2], input_dim[rank - 1], errors::InvalidArgument( "Eigvalsh op is designed for square matrix, consequently" "inner-most 2 dimensions of Input(X) should be symmetric." "But received X's shape[-2] = %d and shape[-1] = %d.", input_dim[rank - 2], input_dim[rank - 1])); std::vector values_dim; for (auto i = 0; i < rank - 1; i++) { values_dim.emplace_back(input_dim[i]); } if (out_w != nullptr) { out_w->set_dims(phi::make_ddim(values_dim)); out_w->set_dtype(dtype::ToReal(x.dtype())); } if (out_v != nullptr) { out_v->set_dims(input_dim); out_v->set_dtype(x.dtype()); } } void EinsumInferMeta(const std::vector& inputs, const std::string& equation, MetaTensor* out) { // collect the following informations to prepare einsum. LabelMap labelshape(0); LabelMap labeltype(LabelType::Reduction); std::vector label2perms(inputs.size(), LabelMap(-1)); std::vector all_labels; std::vector broadcast_dims; std::vector output_dims; std::vector> ellipsis_dims(2); std::vector input_dims; for (auto& i : inputs) { input_dims.push_back(i->dims()); } std::string right; ParseEinsumEquation(equation, input_dims, &labelshape, &labeltype, &all_labels, &label2perms, &ellipsis_dims, &broadcast_dims, &output_dims, &right); VLOG(3) << "Einsum Infershape: input dims:" << paddle::string::join_strings(input_dims, "\n"); VLOG(3) << "Einsum Infershape: equation:" << equation; VLOG(3) << "Einsum Infershape: all_labels:" << paddle::string::join_strings(all_labels, ","); VLOG(3) << "Einsum Infershape: output dims:" << paddle::string::join_strings(output_dims, ","); VLOG(3) << "Label Type is : " << label_to_string(all_labels, labeltype); VLOG(3) << "Label Shape is : " << label_to_string(all_labels, labelshape); out->set_dims(make_ddim(output_dims)); out->set_dtype(inputs[0]->dtype()); } void EinsumRawInferMeta(const std::vector& inputs, const std::string& equation, MetaTensor* out, std::vector inner_cache, std::vector xshape) { EinsumInferMeta(inputs, equation, out); for (size_t i = 0; i < xshape.size(); ++i) { if (xshape[i] != nullptr) { xshape[i]->set_dims(inputs[i]->dims()); xshape[i]->set_dtype(inputs[i]->dtype()); } } } void ExpandInferMeta(const MetaTensor& x, const IntArray& shape, MetaTensor* out) { #define MAX_RANK_SUPPORTED 6 auto x_dims = x.dims(); auto expand_shape = shape.GetData(); if (expand_shape.size() == 0) { expand_shape = std::vector(x_dims.size(), -1); } PADDLE_ENFORCE_GE( expand_shape.size(), static_cast(x_dims.size()), phi::errors::InvalidArgument( "The number of elements (%d) of 'shape' for " "expand_v2 op must be greater than or equal to the rank " "(%d) of the input.", expand_shape.size(), static_cast(x_dims.size()))); PADDLE_ENFORCE_LE( expand_shape.size(), MAX_RANK_SUPPORTED, phi::errors::InvalidArgument("The number of elements (%d) of 'shape' for " "must not be greater than %d.", expand_shape.size(), MAX_RANK_SUPPORTED)); PADDLE_ENFORCE_GE( expand_shape.size(), 1, phi::errors::InvalidArgument("The number of elements (%d) of 'shape' for " "must be a positive integer.", expand_shape.size())); auto out_rank = std::max(static_cast(x_dims.size()), expand_shape.size()); std::vector out_shape(out_rank); auto x_dim_vec = phi::vectorize(x_dims); auto diff = expand_shape.size() - x_dim_vec.size(); x_dim_vec.insert(x_dim_vec.begin(), diff, -1); for (size_t i = 0; i < expand_shape.size(); ++i) { if (x_dims[i] == -1) { out_shape[i] = -1; } else if (expand_shape[i] == -1) { if (static_cast(x_dims.size()) > i) { out_shape[i] = x_dims[i]; } else { out_shape[i] = -1; } } else if (expand_shape[i] == -2) { // We use -2 to represent the element in expand_shape is a var. out_shape[i] = -1; } else { PADDLE_ENFORCE_GT( expand_shape[i], 0, phi::errors::InvalidArgument( "The %uth element of 'shape' for expand_v2 op must be " "greater than 0, but the value given is %d.", i, expand_shape[i])); out_shape[i] = expand_shape[i]; } } out->set_dims(make_ddim(out_shape)); out->set_dtype(x.dtype()); if (out_shape[0] == x_dims[0]) { out->share_lod(x); } } void FlattenInferMeta(const MetaTensor& x, int start_axis, int stop_axis, MetaTensor* out) { FlattenWithXShapeInferMeta(x, start_axis, stop_axis, out, nullptr); } void FlattenWithXShapeInferMeta(const MetaTensor& x, int start_axis, int stop_axis, MetaTensor* out, MetaTensor* xshape) { auto x_dims = x.dims(); int in_dims_size = x_dims.size(); if (start_axis < 0) { start_axis = start_axis + in_dims_size; } if (stop_axis < 0) { stop_axis = stop_axis + in_dims_size; } PADDLE_ENFORCE_GE( stop_axis, start_axis, phi::errors::InvalidArgument("The stop_axis should be greater" "than or equal to start_axis.")); int64_t outer = 1; std::vector out_shape; out_shape.reserve(in_dims_size - stop_axis + start_axis); for (int i = 0; i < start_axis; ++i) { out_shape.push_back(x_dims[i]); } for (int i = start_axis; i <= stop_axis; i++) { if (x_dims[i] == -1 || outer == -1) { outer = -1; } else { outer *= x_dims[i]; } } out_shape.push_back(outer); for (int i = stop_axis + 1; i < in_dims_size; i++) { out_shape.push_back(x_dims[i]); } const auto& out_dims = phi::make_ddim(out_shape); out->set_dims(out_dims); out->set_dtype(x.dtype()); out->set_layout(x.layout()); if (x_dims[0] == out_dims[0]) { // Only pass LoD when the first dimension of output and Input(X) // are the same. out->share_lod(x); } if (xshape == nullptr) return; std::vector xshape_dims(x_dims.size() + 1); xshape_dims[0] = 0; for (int i = 0; i < x_dims.size(); ++i) { xshape_dims[i + 1] = x_dims[i]; } xshape->set_dims(phi::make_ddim(xshape_dims)); xshape->share_lod(x); } void FlipInferMeta(const MetaTensor& x, const std::vector& axis, MetaTensor* out) { auto x_dims = x.dims(); auto flip_dims = axis; size_t flip_dims_size = axis.size(); if (flip_dims_size > 0) { // check if dims axis within range auto min_max_d = std::minmax_element(flip_dims.begin(), flip_dims.end()); PADDLE_ENFORCE_LT(*min_max_d.first, x_dims.size(), phi::errors::InvalidArgument( "min(axes) should be less than the input tensor X's " "axes of FlipOp. But received min(axes) = %d, " "X's axes = %d, X's shape = [%s]", *min_max_d.first, x_dims.size(), x_dims)); PADDLE_ENFORCE_GE(*min_max_d.first, x_dims.size() * -1, phi::errors::InvalidArgument( "min(axes) should be greater than or equal to the " "input tensor X's " "axes of FlipOp times -1. But received " "min(axes) = %d, X's " "axes = %d, X's shape = [%s]", *min_max_d.first, x_dims.size() * -1, x_dims)); PADDLE_ENFORCE_LT(*min_max_d.second, x_dims.size(), phi::errors::InvalidArgument( "max(axes) should be less than the input tensor X's " "axes of FlipOp. But received max(axes) = %d, " "X's axes = %d, X's shape = [%s]", *min_max_d.second, x_dims.size(), x_dims)); PADDLE_ENFORCE_GE(*min_max_d.second, x_dims.size() * -1, phi::errors::InvalidArgument( "max(axes) should be greater than or equal to the " "input tensor X's " "axes of FlipOp times -1. But received " "max(axes) = %d, X's " "axes = %d, X's shape = [%s]", *min_max_d.second, x_dims.size() * -1, x_dims)); // check duplicates in dims flip_dims.erase(std::unique(flip_dims.begin(), flip_dims.end()), flip_dims.end()); PADDLE_ENFORCE_EQ(flip_dims.size(), flip_dims_size, phi::errors::InvalidArgument( "axes has duplicates, original flip axes size=%d, " "but unique flip axes size=%d.)", flip_dims_size, flip_dims.size())); } VLOG(3) << "flip operator x.shape=" << x_dims; std::vector output_dims(x_dims.size()); for (int i = 0; i < x_dims.size(); ++i) { output_dims[i] = x_dims[i]; } out->set_dims(phi::make_ddim(output_dims)); out->set_dtype(x.dtype()); out->share_lod(x); } void FrameInferMeta(const MetaTensor& x, int frame_length, int hop_length, int axis, MetaTensor* out, MetaConfig config) { PADDLE_ENFORCE_NOT_NULL(out, phi::errors::InvalidArgument( "Output(Out) of FrameOp should not be null.")); const auto x_dims = x.dims(); const int x_rank = x_dims.size(); PADDLE_ENFORCE_GE(x_rank, 1, phi::errors::InvalidArgument( "Input(X) of FrameOp should be a tensor which contains " "at least 1 dimension, but got rank %s.", x_rank)); PADDLE_ENFORCE_GT(hop_length, 0, phi::errors::InvalidArgument( "Attribute(hop_length) of FrameOp should be greater " "than 0, but got %s.", hop_length)); PADDLE_ENFORCE_EQ( (axis == 0 || axis == -1), true, phi::errors::InvalidArgument( "Attribute(axis) of FrameOp should 0 or -1, but got %s.", axis)); std::vector output_shape; int seq_length; int n_frames; int start_axis; int end_axis; if (axis == 0) { seq_length = x_dims[0]; start_axis = 1; end_axis = x_rank - 1; } else { seq_length = x_dims[x_rank - 1]; start_axis = 0; end_axis = x_rank - 2; } bool contain_unknown_dim = phi::contain_unknown_dim(x_dims); bool check = config.is_runtime || !contain_unknown_dim; if (check) { PADDLE_ENFORCE_LE(frame_length, seq_length, phi::errors::InvalidArgument( "Attribute(frame_length) of FrameOp should be less " "equal than sequence length, but got (%s) > (%s).", frame_length, seq_length)); } // It won't go into for loop when x_rank == 1U. for (int i = start_axis; i <= end_axis; i++) { output_shape.push_back(x_dims[i]); } if (seq_length == -1) { n_frames = -1; } else { n_frames = 1 + (seq_length - frame_length) / hop_length; } if (axis == 0) { // (n_frames, frame_length, ...) output_shape.insert(output_shape.begin(), frame_length); output_shape.insert(output_shape.begin(), n_frames); } else { // (..., frame_length, n_frames) output_shape.push_back(frame_length); output_shape.push_back(n_frames); } out->set_dims(phi::make_ddim(output_shape)); out->set_dtype(x.dtype()); } void FullBatchSizeLikeInferMeta(const MetaTensor& x, const std::vector& shape, const Scalar& val, DataType dtype, int x_batch_size_dim, int out_batch_size_dim, MetaTensor* out) { BatchSizeLikeInferMeta(x, shape, x_batch_size_dim, out_batch_size_dim, out); out->set_dtype(dtype); } void GumbelSoftmaxInferMeta(const MetaTensor& x, float temperature, bool hard, int axis, MetaTensor* out) { UnchangedInferMetaCheckAxis(x, axis, out); } void HistogramInferMeta( const MetaTensor& input, int64_t bins, int min, int max, MetaTensor* out) { PADDLE_ENFORCE_GE(bins, 1, phi::errors::InvalidArgument( "The bins should be greater than or equal to 1." "But received nbins is %d", bins)); PADDLE_ENFORCE_GE( max, min, phi::errors::InvalidArgument("max must be larger or equal to min." "But received max is %d, min is %d", max, min)); out->set_dims({bins}); out->share_lod(input); } void IncrementInferMeta(const MetaTensor& x, float value, MetaTensor* out) { PADDLE_ENFORCE_EQ( product(x.dims()), 1UL, errors::InvalidArgument("The number of elements in Input(X) should be 1." "Now the number is %d.", product(x.dims()))); out->set_dims(x.dims()); out->share_lod(x); out->set_dtype(x.dtype()); } static phi::DDim ValidateShape(const std::vector shape, const phi::DDim& in_dims) { const int64_t in_size = phi::product(in_dims); auto in_dims_vec = phi::vectorize(in_dims); bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(), [](int64_t i) { return i > 0; }); // only one dimension can be set to -1, whose size will be automatically // infered. const int64_t unk_dim_val = -1; const int64_t copy_dim_val = 0; std::vector output_shape(shape.size(), 0); int64_t capacity = 1; int unk_dim_idx = -1; for (size_t i = 0; i < shape.size(); ++i) { if (shape[i] == unk_dim_val) { PADDLE_ENFORCE_EQ( unk_dim_idx, -1, phi::errors::InvalidArgument( "Only one dimension value of 'shape' in ReshapeOp can " "be -1. But received shape = [%s], shape[%d] is also -1.", phi::make_ddim(shape), i)); unk_dim_idx = i; } else if (shape[i] == copy_dim_val) { PADDLE_ENFORCE_LT( static_cast(i), in_dims.size(), phi::errors::InvalidArgument( "The index of 0 in `shape` must be less than " "the input tensor X's dimensions. " "But received shape = [%s], shape[%d] = 0, X's shape = [%s], " "X's dimensions = %d.", phi::make_ddim(shape), i, in_dims, in_dims.size())); } else { PADDLE_ENFORCE_GT( shape[i], 0, phi::errors::InvalidArgument( "Each dimension value of 'shape' in ReshapeOp must not " "be negative except one unknown dimension. " "But received shape = [%s], shape[%d] = %d.", phi::make_ddim(shape), i, shape[i])); } // NOTE all non-zero values will be converted to True (include negative // value) capacity *= (shape[i] ? shape[i] : in_dims[i]); output_shape[i] = (shape[i] ? static_cast(shape[i]) : in_dims[i]); } if (unk_dim_idx != -1) { if (all_positive) { // in_size < 0 and is un-determinate in compile time, skip the check, // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8], // capacity = -24, in_size = -8, output_shape[0] = 0 // the following check will fail. output_shape[unk_dim_idx] = -in_size / capacity; PADDLE_ENFORCE_EQ( output_shape[unk_dim_idx] * capacity, -in_size, phi::errors::InvalidArgument( "The 'shape' attribute in ReshapeOp is invalid. " "The input tensor X'size must be divisible by known " "capacity of 'shape'. " "But received X's shape = [%s], X's size = %d, " "'shape' is [%s], known capacity of 'shape' is %d.", in_dims, in_size, phi::make_ddim(shape), capacity)); } else { output_shape[unk_dim_idx] = -1; } } else { if (all_positive) { PADDLE_ENFORCE_EQ( capacity, in_size, phi::errors::InvalidArgument( "The 'shape' in ReshapeOp is invalid. " "The input tensor X'size must be equal to the capacity of " "'shape'. " "But received X's shape = [%s], X's size = %d, 'shape' is " "[%s], the capacity of 'shape' is %d.", in_dims, in_size, phi::make_ddim(shape), capacity)); } } // support reshape with zero-input(input tensor with product(shape) == 0) // by now we require that if the input tensor is zero shape, the target // shape of output must be zero if (in_size == 0) { PADDLE_ENFORCE_LE( capacity, in_size, phi::errors::InvalidArgument( "The 'shape' in ReshapeOp is invalid. " "The input tensor X's shape = [%s], X's capacity = %d." "But the target shape of Out is [%s], the " "capacity of 'Out' is %d.", in_dims, in_size, phi::make_ddim(shape), capacity)); } return phi::make_ddim(output_shape); } void InferMetaFromVecValue(const MetaTensor& x, const std::vector& shape, MetaTensor* out) { PADDLE_ENFORCE_EQ(!shape.empty(), true, phi::errors::InvalidArgument( "The parameter 'shape' in ReshapeOp must be set. " "But received 'shape' is empty.")); auto x_dims = x.dims(); auto out_dims = ValidateShape(shape, x_dims); out->set_dims(out_dims); out->set_dtype(x.dtype()); out->set_layout(x.layout()); if (x_dims[0] == out_dims[0]) { // Only pass LoD when the first dimension of output and Input(X) // are the same. out->share_lod(x); } } void InverseInferMeta(const MetaTensor& x, MetaTensor* out) { auto input_dims = x.dims(); int64_t input_rank = input_dims.size(); PADDLE_ENFORCE_GE( input_rank, 2, errors::InvalidArgument( "The dimension of Input(Input) is expected to be no less than 2. " "But received: Input(Input)'s dimension = %d, shape = [%s].", input_rank, input_dims)); for (int64_t i = 0; i < input_rank; ++i) { PADDLE_ENFORCE_EQ( (input_dims[i] == -1) || (input_dims[i] > 0), true, errors::InvalidArgument( "Each dimension of input tensor is expected to be -1 or a " "positive number, but received %d. Input's shape is [%s].", input_dims[i], input_dims)); } if (input_dims[input_rank - 2] > 0 && input_dims[input_rank - 1] > 0) { PADDLE_ENFORCE_EQ(input_dims[input_rank - 2], input_dims[input_rank - 1], errors::InvalidArgument( "The last two dimensions are expected to be equal. " "But received: %d and %d; " "Input(Input)'s shape = [%s].", input_dims[input_rank - 2], input_dims[input_rank - 1], input_dims)); } out->set_dims(input_dims); out->set_dtype(x.dtype()); out->share_lod(x); } void IsEmptyInferMeta(const MetaTensor& x, MetaTensor* out) { out->set_dims(phi::make_ddim({1})); out->set_dtype(DataType::BOOL); } void IsfiniteInferMeta(const MetaTensor& x, MetaTensor* out) { out->set_dims(x.dims()); out->set_dtype(DataType::BOOL); } void KthvalueInferMeta(const MetaTensor& x, int k, int axis, bool keepdim, MetaTensor* out, MetaTensor* indices, MetaConfig config) { auto input_dims = x.dims(); const int& dim_size = input_dims.size(); PADDLE_ENFORCE_LT(axis, dim_size, phi::errors::InvalidArgument( "the axis must be [-%d, %d), but received %d .", dim_size, dim_size, axis)); PADDLE_ENFORCE_GE(axis, -dim_size, phi::errors::InvalidArgument( "the axis must be [-%d, %d), but received %d .", dim_size, dim_size, axis)); if (axis < 0) axis += dim_size; PADDLE_ENFORCE_GE( k, 1, phi::errors::InvalidArgument( "the k in the kthvalue must >= 1, but received %d .", k)); PADDLE_ENFORCE_GE( input_dims.size(), 1, phi::errors::InvalidArgument("input of kthvalue must have >= 1d shape")); if (config.is_runtime) { PADDLE_ENFORCE_GE( input_dims[axis], k, phi::errors::InvalidArgument( "input of kthvalue must have >= %d columns in axis of %d", k, axis)); } std::vector dimvec; for (int64_t i = 0; i < axis; i++) { dimvec.emplace_back(input_dims[i]); } if (keepdim) { dimvec.emplace_back(static_cast(1)); } for (int64_t i = axis + 1; i < dim_size; i++) { dimvec.emplace_back(input_dims[i]); } DDim dims = phi::make_ddim(dimvec); out->set_dims(dims); out->share_lod(x); out->set_dtype(x.dtype()); indices->set_dims(dims); indices->share_lod(x); indices->set_dtype(x.dtype()); } void LogsumexpInferMeta(const MetaTensor& input, const std::vector& axis, bool keepdim, bool reduce_all, MetaTensor* out) { auto x_dims = input.dims(); auto x_rank = x_dims.size(); std::vector formated_axis = axis; PADDLE_ENFORCE_LE(x_rank, 4, errors::InvalidArgument( "The input tensor X's dimensions of logsumexp " "should be less or equal than 4. But received X's " "dimensions = %d, X's shape = [%s].", x_rank, x_dims)); PADDLE_ENFORCE_GT( axis.size(), 0, errors::InvalidArgument( "The size of axis of logsumexp " "should be greater than 0. But received the size of axis " "of logsumexp is %d.", axis.size())); for (size_t i = 0; i < axis.size(); i++) { PADDLE_ENFORCE_LT(axis[i], x_rank, errors::InvalidArgument( "axis[%d] should be in the " "range [-D, D), where D is the dimensions of X and " "D is %d. But received axis[%d] = %d.", i, x_rank, i, axis[i])); PADDLE_ENFORCE_GE(axis[i], -x_rank, errors::InvalidArgument( "axis[%d] should be in the " "range [-D, D), where D is the dimensions of X and " "D is %d. But received axis[%d] = %d.", i, x_rank, i, axis[i])); if (axis[i] < 0) { formated_axis[i] += x_rank; } } auto dims_vector = vectorize(x_dims); if (reduce_all) { if (keepdim) out->set_dims(phi::make_ddim(std::vector(x_rank, 1))); else out->set_dims({1}); } else { auto dims_vector = vectorize(x_dims); if (keepdim) { for (size_t i = 0; i < formated_axis.size(); ++i) { dims_vector[formated_axis[i]] = 1; } } else { const int kDelFlag = -1; for (size_t i = 0; i < formated_axis.size(); ++i) { dims_vector[formated_axis[i]] = kDelFlag; } dims_vector.erase( std::remove(dims_vector.begin(), dims_vector.end(), kDelFlag), dims_vector.end()); } if (!keepdim && dims_vector.size() == 0) { dims_vector.push_back(1); } auto out_dims = phi::make_ddim(dims_vector); out->set_dims(out_dims); if (formated_axis.size() > 0 && formated_axis[0] != 0) { // Only pass LoD when not reducing on the first dim. out->share_lod(input); } } out->set_dtype(input.dtype()); } void MatrixPowerInferMeta(const MetaTensor& x, int n, MetaTensor* out) { auto dims = x.dims(); auto n_dim = dims.size(); PADDLE_ENFORCE_GE(n_dim, 2, phi::errors::InvalidArgument( "The Input(X) should have at least 2 dimensions. But " "received a %d dimension tensor.", n_dim)); PADDLE_ENFORCE_EQ(dims[n_dim - 2], dims[n_dim - 1], phi::errors::InvalidArgument( "The inner-most 2 dimensions of Input(X) all should " "be square matrices " "But received X's shape[-2] = %d and shape[-1] = %d.", dims[n_dim - 2], dims[n_dim - 1])); out->set_dims(dims); out->share_lod(x); out->set_dtype(x.dtype()); } void LUInferMeta(const MetaTensor& x, bool pivot, MetaTensor* out, MetaTensor* pivots, MetaTensor* infos) { auto x_dims = x.dims(); int x_rank = x_dims.size(); PADDLE_ENFORCE_NOT_NULL( out, phi::errors::InvalidArgument("Output(Out) should not be nullptr.")); PADDLE_ENFORCE_GE( x_rank, 2, phi::errors::InvalidArgument("The rank of input must greater than 2.")); out->set_dims(x_dims); out->set_dtype(x.dtype()); int m = x_dims[x_rank - 1]; int n = x_dims[x_rank - 2]; int min_mn = std::min(m, n); auto dims_vec = phi::vectorize(x_dims); PADDLE_ENFORCE_NOT_NULL( infos, phi::errors::InvalidArgument("Output(Infos) should not be nullptr.")); if (x_rank == 2) { auto Infos_dim = std::vector(1); infos->set_dims(phi::make_ddim(Infos_dim)); } else { auto Infos_dim = std::vector(dims_vec.begin(), dims_vec.begin() + x_rank - 2); infos->set_dims(phi::make_ddim(Infos_dim)); } infos->set_dtype(DataType::INT32); if (pivot) { PADDLE_ENFORCE_NOT_NULL( pivots, phi::errors::InvalidArgument("Output(Pivots) should not be nullptr.")); auto Pivots_dim = std::vector(dims_vec.begin(), dims_vec.begin() + x_rank - 1); Pivots_dim[x_rank - 2] = min_mn; pivots->set_dims(phi::make_ddim(Pivots_dim)); pivots->set_dtype(DataType::INT32); } } void MatrixRankInferMeta(const MetaTensor& x, bool use_default_tol, bool hermitian, MetaTensor* out) { auto dim_x = x.dims(); PADDLE_ENFORCE_GE(dim_x.size(), 2, phi::errors::InvalidArgument( "The dims of input must be greater than 2.")); if (hermitian) { int rows = dim_x[dim_x.size() - 2]; int cols = dim_x[dim_x.size() - 1]; PADDLE_ENFORCE_EQ(rows, cols, phi::errors::InvalidArgument( "if hermitian == true, matrix should be n*n")); } DDim dim_x_batch = detail::CheckAndGetOutputDim(dim_x); out->set_dims(dim_x_batch); out->share_lod(x); } void MaxOutInferMeta(const MetaTensor& x, int groups, int axis, MetaTensor* out) { auto in_x_dims = x.dims(); // check groups > 1 PADDLE_ENFORCE_GT( groups, 1, phi::errors::InvalidArgument("Attr(groups) of Op(maxout) should be " "larger than 1. But received %d.", groups)); PADDLE_ENFORCE_EQ( axis == 1 || axis == -1 || axis == 3, true, phi::errors::InvalidArgument( "axis only supported 1, -1 or 3, but recevied axis is: %d.", axis)); PADDLE_ENFORCE_EQ(in_x_dims.size(), 4, phi::errors::InvalidArgument( "x's dims should be 4, but received x's dims is: %d.", in_x_dims.size())); if (axis < 0) { axis += in_x_dims.size(); } PADDLE_ENFORCE_EQ( in_x_dims[axis] % groups, 0, phi::errors::InvalidArgument( "The number of input channels for Op(maxout) " "should be divisible by Attr(groups). But received: the " "input's channels is [%d], the shape of input is [%s], " "the Attr(groups) is [%d], the Attr(axis) is [%d]. The " "error may come from wrong Attr(groups) or Attr(axis) setting.", in_x_dims[axis], in_x_dims, groups, axis)); std::vector output_shape( {in_x_dims[0], in_x_dims[1], in_x_dims[2], in_x_dims[3]}); output_shape[axis] = in_x_dims[axis] / groups; out->set_dims(phi::make_ddim(output_shape)); out->set_dtype(x.dtype()); } void MaxPoolWithIndexInferMeta(const MetaTensor& x, const std::vector& kernel_size, const std::vector& strides, const std::vector& paddings, bool global_pooling, bool adaptive, MetaTensor* out, MetaTensor* mask, MetaConfig config) { std::vector paddings_ = paddings; std::vector kernel_size_ = kernel_size; auto x_dims = x.dims(); PADDLE_ENFORCE( x_dims.size() == 4 || x_dims.size() == 5, errors::InvalidArgument( "Pooling intput should be 4-D or 5-D tensor but received %dD-Tensor", x_dims.size())); if (global_pooling) { kernel_size_.resize(static_cast(x_dims.size()) - 2); for (size_t i = 0; i < kernel_size_.size(); ++i) { paddings_[i] = 0; kernel_size_[i] = static_cast(x_dims[i + 2]); } } PADDLE_ENFORCE_EQ( x_dims.size() - kernel_size_.size(), 2U, errors::InvalidArgument( "The input size %d minus the kernel size %d should equal to 2.", x_dims.size(), kernel_size_.size())); PADDLE_ENFORCE_EQ( kernel_size_.size(), strides.size(), errors::InvalidArgument( "Strides size %d and pooling size %d should be the same.", strides.size(), kernel_size_.size())); PADDLE_ENFORCE_EQ( kernel_size_.size(), paddings_.size(), errors::InvalidArgument( "Paddings size %d and pooling size %d should be the same.", paddings_.size(), kernel_size_.size())); std::vector output_shape({x_dims[0], x_dims[1]}); if (adaptive) { output_shape.insert( output_shape.end(), kernel_size_.begin(), kernel_size_.end()); } else { for (size_t i = 0; i < kernel_size_.size(); ++i) { if ((!config.is_runtime) && (x_dims[i + 2] < 0)) { output_shape.push_back(x_dims[i + 2]); } else { output_shape.push_back(funcs::MaxPoolOutputSize( x_dims[i + 2], kernel_size_[i], paddings_[i], strides[i])); } } } out->set_dims(make_ddim(output_shape)); out->set_dtype(x.dtype()); mask->set_dims(make_ddim(output_shape)); mask->set_dtype(paddle::experimental::CppTypeToDataType::Type()); } void MeanAllInferMeta(const MetaTensor& x, MetaTensor* out) { out->set_dims(phi::make_ddim({1})); out->set_dtype(x.dtype()); out->set_layout(x.layout()); } void ModeInferMeta(const MetaTensor& x, int axis, bool keepdim, MetaTensor* out, MetaTensor* indices) { auto input_dims = x.dims(); const int& dim_size = input_dims.size(); PADDLE_ENFORCE_EQ( (axis < dim_size) && (axis >= (-1 * dim_size)), true, errors::InvalidArgument( "the axis of ModeOp must be [-%d, %d), but you set axis is %d", dim_size, dim_size, axis)); PADDLE_ENFORCE_GE( input_dims.size(), 1, errors::InvalidArgument("input of ModeOp must have >= 1d shape")); if (axis < 0) axis += dim_size; std::vector dimvec; for (int64_t i = 0; i < axis; i++) { dimvec.emplace_back(input_dims[i]); } if (keepdim) { dimvec.emplace_back(static_cast(1)); } for (int64_t i = axis + 1; i < dim_size; i++) { dimvec.emplace_back(input_dims[i]); } DDim dims = phi::make_ddim(dimvec); PADDLE_ENFORCE_GE(input_dims.size(), 1, errors::InvalidArgument("input shape should >= 1d")); out->set_dims(dims); out->share_lod(x); out->set_dtype(x.dtype()); indices->set_dims(dims); indices->share_lod(x); indices->set_dtype(x.dtype()); } void MultinomialInferMeta(const MetaTensor& x, int num_samples, bool replacement, MetaTensor* out) { auto x_dim = x.dims(); int64_t x_rank = x_dim.size(); PADDLE_ENFORCE_GT(x_rank, 0, errors::InvalidArgument( "The number of dimensions of the input probability " "distribution should be > 0, but got %d.", x_rank)); PADDLE_ENFORCE_LE(x_rank, 2, errors::InvalidArgument( "The number of dimensions of the input probability " "distribution should be <= 2, but got %d.", x_rank)); std::vector out_dims(x_rank); for (int64_t i = 0; i < x_rank - 1; i++) { out_dims[i] = x_dim[i]; } PADDLE_ENFORCE_GT( num_samples, 0, errors::InvalidArgument( "The number of samples should be > 0, but got %d.", num_samples)); out_dims[x_rank - 1] = num_samples; out->set_dims(make_ddim(out_dims)); out->set_dtype(DataType::INT64); } void NanmedianInferMeta(const MetaTensor& x, const IntArray& axes, bool keep_dim, MetaTensor* out, MetaTensor* median_index) { std::vector axis_list = axes.GetData(); auto x_dim = x.dims(); int64_t x_rank = x_dim.size(); out->set_dtype(x.dtype()); median_index->set_dtype(DataType::INT64); median_index->set_dims(make_ddim({x.numel() * 2})); std::vector out_dim; if (axis_list.empty()) { if (keep_dim) { for (int64_t i = 0; i < x_rank; i++) { out_dim.push_back(1); } } else { out_dim.push_back(1); } } else { std::vector cleaned_axis; for (auto& axis : axis_list) { if (axis < 0) axis += x_rank; PADDLE_ENFORCE_LT( axis, x_rank, errors::InvalidArgument( "Attr(axis) value should be in range [-R, R-1], R is " "the rank of Input(X). But received axis: %d, R: %d. " "Current Input(X)'s shape is=[%s].", axis, x_rank, x_dim)); PADDLE_ENFORCE_EQ( std::find(cleaned_axis.begin(), cleaned_axis.end(), axis), cleaned_axis.end(), errors::InvalidArgument("Attr(axes) has duplicated elements: %d.", static_cast(axis))); cleaned_axis.push_back(axis); } for (int64_t i = 0; i < x_rank; i++) { if (std::find(cleaned_axis.begin(), cleaned_axis.end(), i) == cleaned_axis.end()) { out_dim.push_back(x_dim[i]); } else if (keep_dim) { out_dim.push_back(1); } } } out->set_dims(make_ddim(out_dim)); } void NMSInferMeta(const MetaTensor& x, float threshold, MetaTensor* out) { auto boxes_dim = x.dims(); PADDLE_ENFORCE_EQ(boxes_dim.size(), 2, phi::errors::InvalidArgument( "The Input Boxes must be 2-dimention " "whose shape must be [N, 4] " "N is the number of boxes " "in last dimension in format [x1, x2, y1, y2]. ")); auto num_boxes = boxes_dim[0]; out->set_dims(phi::make_ddim({num_boxes})); } void NormInferMeta(const MetaTensor& x, int axis, float epsilon, bool is_test, MetaTensor* out, MetaTensor* norm) { auto xdim = x.dims(); out->set_dims(x.dims()); out->set_dtype(x.dtype()); if (is_test == false) { if (axis < 0) axis = xdim.size() + axis; xdim[axis] = 1; norm->set_dims(xdim); norm->set_dtype(x.dtype()); } } void OverlapAddInferMeta(const MetaTensor& x, int hop_length, int axis, MetaTensor* out, MetaConfig config) { const auto x_dims = x.dims(); const int x_rank = x_dims.size(); PADDLE_ENFORCE_GE( x_rank, 2, errors::InvalidArgument( "Input(X) of OverlapAddOp should be a tensor which contains " "at least 2 dimensions, but got rank %s.", x_rank)); PADDLE_ENFORCE_GT( hop_length, 0, errors::InvalidArgument( "Attribute(hop_length) of OverlapAddOp should be greater " "than 0, but got %s.", hop_length)); PADDLE_ENFORCE_EQ( (axis == 0 || axis == -1), true, errors::InvalidArgument( "Attribute(axis) of OverlapAddOp should 0 or -1, but got %s.", axis)); std::vector output_shape; int n_frames; int frame_length; int seq_length; int start_axis; int end_axis; if (axis == 0) { n_frames = x_dims[0]; frame_length = x_dims[1]; start_axis = 2; end_axis = x_rank - 1; } else { n_frames = x_dims[x_rank - 1]; frame_length = x_dims[x_rank - 2]; start_axis = 0; end_axis = x_rank - 3; } bool contain_unknown_dim = phi::contain_unknown_dim(x_dims); bool check = config.is_runtime || !contain_unknown_dim; if (check) { PADDLE_ENFORCE_LE( hop_length, frame_length, errors::InvalidArgument( "Attribute(hop_length) of OverlapAddOp should be less or equal " "than frame_length, but got hop_length(%s) > frame_length(%s).", hop_length, frame_length)); } if (n_frames == -1) { seq_length = -1; } else { seq_length = (n_frames - 1) * hop_length + frame_length; } // It won't go into for loop when x_rank == 2U. for (int i = start_axis; i <= end_axis; i++) { output_shape.push_back(x_dims[i]); } if (axis == 0) { // (seq_length, ...) output_shape.insert(output_shape.begin(), seq_length); } else { // (..., seq_length) output_shape.push_back(seq_length); } out->set_dims(phi::make_ddim(output_shape)); } void PadInferMeta(const MetaTensor& input, const std::vector& paddings, float pad_value, MetaTensor* out, MetaConfig config) { auto x_dim = input.dims(); PADDLE_ENFORCE_EQ( static_cast(paddings.size()), x_dim.size() * 2, phi::errors::InvalidArgument( "Size of 'paddings' dimension should be equal to 2 * size of " "Input(X)'s dimension, but received (size of 'paddings' dimension " "is) %d vs (2 * size of Input(X)'s dimension is) %d.", static_cast(paddings.size()), x_dim.size() * 2)); for (size_t i = 0; i < paddings.size(); ++i) { PADDLE_ENFORCE_GE(paddings[i], 0, phi::errors::InvalidArgument( "The element of 'paddings' should >= 0, but " "received %d for index %d.", paddings[i], static_cast(i))); } std::vector out_dims(x_dim.size()); for (int i = 0; i < x_dim.size(); ++i) { if ((!config.is_runtime) && (x_dim[i] == -1)) { out_dims[i] = -1; } else { out_dims[i] = x_dim[i] + paddings[i * 2] + paddings[i * 2 + 1]; } } out->set_dims(phi::make_ddim(out_dims)); if (out_dims[0] == x_dim[0]) { // Only pass LoD when the first dimension is equal between // output and input. out->share_lod(input); } out->set_dtype(input.dtype()); } void Pad3dInferMeta(const MetaTensor& x, const IntArray& paddings_int_array, const std::string& mode, float value, const std::string& data_format, MetaTensor* out, MetaConfig config) { auto x_dim = x.dims(); PADDLE_ENFORCE_EQ(x_dim.size(), 5, errors::InvalidArgument( "The size of Input(X)'s dimension should be equal to " "5, but received %d. ", x_dim.size())); std::vector out_dims(x_dim.size(), -1); out_dims[0] = x_dim[0]; auto& paddings = paddings_int_array.GetData(); if (data_format == "NCDHW") { out_dims[1] = x_dim[1]; } else { out_dims[4] = x_dim[4]; } if (paddings_int_array.FromTensor()) { if (config.is_runtime) { PADDLE_ENFORCE_EQ( paddings.size(), 6, errors::InvalidArgument("Shape of Input(Paddings) should be equal to " "[6], but received [%d].", paddings.size())); if (data_format == "NCDHW") { out_dims[2] = x_dim[2] + paddings[4] + paddings[5]; out_dims[3] = x_dim[3] + paddings[2] + paddings[3]; out_dims[4] = x_dim[4] + paddings[0] + paddings[1]; } else { out_dims[1] = x_dim[1] + paddings[4] + paddings[5]; out_dims[2] = x_dim[2] + paddings[2] + paddings[3]; out_dims[3] = x_dim[3] + paddings[0] + paddings[1]; } } } else { PADDLE_ENFORCE_EQ( paddings.size(), 6, errors::InvalidArgument( "Size of paddings should be equal to 6, but received %d.", static_cast(paddings.size()))); if (data_format == "NCDHW") { out_dims[2] = ((!config.is_runtime) && (x_dim[2] < 0)) ? x_dim[2] : (x_dim[2] + paddings[4] + paddings[5]); // depth out_dims[3] = ((!config.is_runtime) && (x_dim[3] < 0)) ? x_dim[3] : (x_dim[3] + paddings[2] + paddings[3]); // height out_dims[4] = ((!config.is_runtime) && (x_dim[4] < 0)) ? x_dim[4] : (x_dim[4] + paddings[0] + paddings[1]); // width } else { // NDHWC out_dims[1] = ((!config.is_runtime) && (x_dim[1] < 0)) ? x_dim[1] : (x_dim[1] + paddings[4] + paddings[5]); // depth out_dims[2] = ((!config.is_runtime) && (x_dim[2] < 0)) ? x_dim[2] : (x_dim[2] + paddings[2] + paddings[3]); // height out_dims[3] = ((!config.is_runtime) && (x_dim[3] < 0)) ? x_dim[3] : (x_dim[3] + paddings[0] + paddings[1]); // width } } out->set_dims(phi::make_ddim(out_dims)); out->set_dtype(x.dtype()); out->share_lod(x); } void PixelShuffleInferMeta(const MetaTensor& x, int upscale_factor, const std::string& data_format, MetaTensor* out) { auto input_dims = x.dims(); PADDLE_ENFORCE_EQ(input_dims.size(), 4, phi::errors::InvalidArgument( "Input should be a 4-D tensor of format [N, C, H, W] " "or [N, H, W, C], but got %u.", input_dims.size())); const bool channel_last = (data_format == "NHWC"); if (!channel_last) { PADDLE_ENFORCE_EQ(input_dims[1] % (upscale_factor * upscale_factor), 0, phi::errors::InvalidArgument( "The square of upscale_factor[%u] should divide the " "number of channel[%u]", upscale_factor * upscale_factor, input_dims[1])); } else { PADDLE_ENFORCE_EQ(input_dims[3] % (upscale_factor * upscale_factor), 0, phi::errors::InvalidArgument( "The square of upscale_factor[%u] should divide the " "number of channel[%u]", upscale_factor * upscale_factor, input_dims[3])); } auto output_dims = input_dims; output_dims[0] = input_dims[0]; if (!channel_last) { output_dims[1] = input_dims[1] / (upscale_factor * upscale_factor); output_dims[2] = input_dims[2] * upscale_factor; output_dims[3] = input_dims[3] * upscale_factor; } else { output_dims[1] = input_dims[1] * upscale_factor; output_dims[2] = input_dims[2] * upscale_factor; output_dims[3] = input_dims[3] / (upscale_factor * upscale_factor); } out->set_dtype(x.dtype()); out->set_dims(output_dims); } void PixelShuffleGradInferMeta(const MetaTensor& out_grad, int upscale_factor, const std::string& data_format, MetaTensor* x_grad) { auto do_dims = out_grad.dims(); PADDLE_ENFORCE_EQ(do_dims.size(), 4, phi::errors::InvalidArgument( "Input should be a 4-D tensor of format [N, C, H, W] " "or [N, H, W, C], but got %u.", do_dims.size())); const bool channel_last = (data_format == "NHWC"); auto dx_dims = do_dims; dx_dims[0] = do_dims[0]; if (!channel_last) { dx_dims[1] = do_dims[1] * (upscale_factor * upscale_factor); dx_dims[2] = do_dims[2] / upscale_factor; dx_dims[3] = do_dims[3] / upscale_factor; } else { dx_dims[1] = do_dims[1] / upscale_factor; dx_dims[2] = do_dims[2] / upscale_factor; dx_dims[3] = do_dims[3] * (upscale_factor * upscale_factor); } x_grad->set_dims(dx_dims); x_grad->set_dtype(out_grad.dtype()); } void PixelUnshuffleInferMeta(const MetaTensor& x, int downscale_factor, const std::string& data_format, MetaTensor* out) { auto input_dims = x.dims(); PADDLE_ENFORCE_EQ(input_dims.size(), 4, phi::errors::InvalidArgument( "Input should be a 4-D tensor of format [N, C, H, W] " "or [N, H, W, C], but got %u.", input_dims.size())); PADDLE_ENFORCE_GE(downscale_factor, 1, phi::errors::InvalidArgument( "downscale_factor should be larger than 0.")); PADDLE_ENFORCE_EQ(data_format == "NCHW" || data_format == "NHWC", true, phi::errors::InvalidArgument( "data_format must be one of " "NCHW and NHWC. But recevied data_format: %s", data_format)); const bool channel_last = (data_format == "NHWC"); if (!channel_last) { PADDLE_ENFORCE_EQ( (input_dims[2] % downscale_factor) == 0 && (input_dims[3] % downscale_factor) == 0, true, phi::errors::InvalidArgument("Downscale factor[%u] should divide both " "height[%u] and width[%u]", downscale_factor, input_dims[2], input_dims[3])); } else { PADDLE_ENFORCE_EQ( (input_dims[1] % downscale_factor) == 0 && (input_dims[2] % downscale_factor) == 0, true, phi::errors::InvalidArgument("Downscale factor[%u] should divide both " "height[%u] and width[%u]", downscale_factor, input_dims[1], input_dims[2])); } auto output_dims = input_dims; output_dims[0] = input_dims[0]; if (!channel_last) { output_dims[1] = input_dims[1] * (downscale_factor * downscale_factor); output_dims[2] = input_dims[2] / downscale_factor; output_dims[3] = input_dims[3] / downscale_factor; } else { output_dims[1] = input_dims[1] / downscale_factor; output_dims[2] = input_dims[2] / downscale_factor; output_dims[3] = input_dims[3] * (downscale_factor * downscale_factor); } out->set_dtype(x.dtype()); out->set_dims(output_dims); } void PNormInferMeta(const MetaTensor& x, float porder, int axis, float epsilon, bool keepdim, bool asvector, MetaTensor* out) { auto x_dim = x.dims(); auto x_rank = x_dim.size(); PADDLE_ENFORCE_GE(axis, -x_rank, errors::InvalidArgument( "Attr(axis) value should be in range [-R, R-1], R is " "the rank of Input(X). But received axis: %d, R: %d. " "Current Input(X)'s shape is=[%s].", axis, x_rank, x_dim)); PADDLE_ENFORCE_LT(axis, x_rank, errors::InvalidArgument( "Attr(axis) value should be in range [-R, R-1], R is " "the rank of Input(X). But received axis: %d, R: %d. " "Current Input(X)'s shape is=[%s].", axis, x_rank, x_dim)); std::vector reduce_dims; if (asvector) { reduce_dims.emplace_back(1); if (keepdim) { for (int i = 1; i < x_dim.size(); ++i) { reduce_dims.emplace_back(1); } x_dim = phi::make_ddim(reduce_dims); } } else { if (axis < 0) axis = x_dim.size() + axis; for (int i = 0; i < x_dim.size(); ++i) { if (i != axis) reduce_dims.emplace_back(x_dim[i]); } if (reduce_dims.size() == 0) { reduce_dims.emplace_back(1); } } x_dim[axis] = 1; if (keepdim) { out->set_dims(x_dim); } else { out->set_dims(phi::make_ddim(reduce_dims)); } out->set_dtype(x.dtype()); } void PoolInferMeta(const MetaTensor& x, const std::vector& kernel_size, const std::vector& strides, const std::vector& paddings, bool ceil_mode, bool exclusive, const std::string& data_format, const std::string& pooling_type, bool global_pooling, bool adaptive, const std::string& padding_algorithm, MetaTensor* out, MetaConfig config) { std::vector paddings_ = paddings; std::vector kernel_size_ = kernel_size; auto x_dims = x.dims(); PADDLE_ENFORCE_EQ( x_dims.size() == 4 || x_dims.size() == 5, true, errors::InvalidArgument( "the input of Op(pool) should be 4-D or 5-D Tensor. But " "received: %u-D Tensor and it's shape is [%s].", x_dims.size(), x_dims)); PADDLE_ENFORCE_EQ(x_dims.size() - kernel_size_.size(), 2U, errors::InvalidArgument( "the dimension of input minus the size of " "Attr(kernel_size_) must be euqal to 2 in Op(pool). " "But received: the dimension of input minus the size " "of Attr(kernel_size_) is %d, the " "input's dimension is %d, the shape of input " "is [%s], the Attr(kernel_size_)'s size is %d, the " "Attr(kernel_size_) is [%s].", x_dims.size() - kernel_size_.size(), x_dims.size(), x_dims, kernel_size_.size(), make_ddim(kernel_size_))); PADDLE_ENFORCE_EQ( kernel_size_.size(), strides.size(), errors::InvalidArgument( "the size of Attr(kernel_size_) and Attr(strides) in " "Op(pool) must be equal. " "But received: Attr(kernel_size_)'s size is %d, Attr(strides)'s " "size is %d, Attr(kernel_size_) is [%s], Attr(strides)is [%s].", kernel_size_.size(), strides.size(), make_ddim(kernel_size_), make_ddim(strides))); // MKL-DNN Kernels are using NCHW order of dims description // so we ignore data_format consideration for MKL-DNN kernel const bool channel_last = (config.is_run_mkldnn_kernel == false) && (data_format == "NHWC" || data_format == "NDHWC"); // update paddings if "SAME" or global_pooling DDim data_dims; if (channel_last) { data_dims = slice_ddim(x_dims, 1, x_dims.size() - 1); } else { data_dims = slice_ddim(x_dims, 2, x_dims.size()); } funcs::UpdatePadding(&paddings_, global_pooling, adaptive, padding_algorithm, data_dims, strides, kernel_size_); if (global_pooling) { funcs::UpdateKernelSize(&kernel_size_, data_dims); } std::vector output_shape; if (adaptive) { output_shape.insert( output_shape.end(), kernel_size_.begin(), kernel_size_.end()); } else { for (int i = 0; i < data_dims.size(); ++i) { if ((!config.is_runtime) && (data_dims[i] < 0)) { output_shape.push_back(data_dims[i]); } else { output_shape.push_back(funcs::PoolOutputSize(data_dims[i], kernel_size_[i], paddings_[2 * i], paddings_[2 * i + 1], strides[i], ceil_mode)); } } } // output_N = input_N output_shape.insert(output_shape.begin(), x_dims[0]); // output_C = input_C if (channel_last) { output_shape.push_back(x_dims[x_dims.size() - 1]); } else { output_shape.insert(output_shape.begin() + 1, x_dims[1]); } out->set_dims(make_ddim(output_shape)); out->share_lod(x); out->set_dtype(x.dtype()); } void RealAndImagInferMeta(const MetaTensor& x, MetaTensor* out) { out->set_dims(x.dims()); out->set_dtype(dtype::ToReal(x.dtype())); out->set_layout(x.layout()); } void QrInferMeta(const MetaTensor& x, const std::string& mode, MetaTensor* q, MetaTensor* r) { auto x_dims = x.dims(); int x_rank = x_dims.size(); PADDLE_ENFORCE_GE( x_dims.size(), 2, phi::errors::InvalidArgument("the rank of input must greater than 2")); bool compute_q; bool reduced_mode; int m = x_dims[x_rank - 2]; int n = x_dims[x_rank - 1]; int min_mn = std::min(m, n); std::tie(compute_q, reduced_mode) = phi::funcs::ParseQrMode(mode); if (compute_q) { int k = reduced_mode ? min_mn : m; auto q_dims_vec = phi::vectorize(x_dims); q_dims_vec[q_dims_vec.size() - 1] = k; q->set_dims(phi::make_ddim(q_dims_vec)); } else { q->set_dims(phi::make_ddim({0})); } int k = reduced_mode ? min_mn : m; auto r_dims_vec = phi::vectorize(x_dims); r_dims_vec[r_dims_vec.size() - 2] = k; r_dims_vec[r_dims_vec.size() - 1] = n; r->set_dims(phi::make_ddim(r_dims_vec)); q->share_lod(x); r->share_lod(x); q->set_dtype(x.dtype()); r->set_dtype(x.dtype()); } DDim ReduceInferDim(const MetaTensor& x, const std::vector& axis, bool keep_dim, bool reduce_all) { auto x_rank = x.dims().size(); std::vector formated_axis = axis; for (size_t i = 0; i < axis.size(); ++i) { PADDLE_ENFORCE_LT(axis[i], x_rank, errors::InvalidArgument( "The reduce dim index %d should be in the " "range [-dimension(X), dimension(X)] " "which dimesion = %d. But received dim index = %d.", i, x_rank, axis[i])); PADDLE_ENFORCE_GE(axis[i], -x_rank, errors::InvalidArgument( "The reduce dim index %d should be in the " "range [-dimension(X), dimension(X)] " "which dimesion = %d. But received dim index = %d.", i, x_rank, axis[i])); if (axis[i] < 0) { formated_axis[i] = axis[i] + x_rank; } } bool full_dim = true; std::set dims_set(formated_axis.begin(), formated_axis.end()); for (int64_t i = 0; i < x.dims().size(); ++i) { if (dims_set.find(i) == dims_set.end()) { full_dim = false; break; } } reduce_all = reduce_all || full_dim; std::vector out_dim_vector; if (keep_dim) { for (int64_t i = 0; i < x.dims().size(); ++i) { if (reduce_all || dims_set.find(i) != dims_set.end()) { out_dim_vector.push_back(1); } else { out_dim_vector.push_back(x.dims().at(i)); } } } else { for (int64_t i = 0; i < x.dims().size(); ++i) { if (reduce_all || dims_set.find(i) != dims_set.end()) { continue; } else { out_dim_vector.push_back(x.dims().at(i)); } } if (out_dim_vector.size() == 0) { out_dim_vector.push_back(1); } } DDim out_dim = phi::make_ddim(out_dim_vector); return out_dim; } void ReduceInferMeta(const MetaTensor& x, const std::vector& axis, bool keep_dim, MetaTensor* out) { bool reduce_all = false; ReduceInferMetaBase(x, axis, keep_dim, reduce_all, out); } void ReduceInferMetaBase(const MetaTensor& x, const std::vector& axis, bool keep_dim, bool reduce_all, MetaTensor* out) { DDim out_dim = ReduceInferDim(x, axis, keep_dim, reduce_all); out->set_dims(out_dim); out->set_dtype(x.dtype()); out->set_layout(x.layout()); } void ReshapeInferMeta(const MetaTensor& x, const IntArray& shape, MetaTensor* out, MetaConfig config) { auto& shape_data = shape.GetData(); PADDLE_ENFORCE_NOT_NULL(out, phi::errors::InvalidArgument( "Output(Out) of ReshapeOp should not be null.")); if (!config.is_runtime && shape.FromTensor()) { out->set_dims(phi::make_ddim(shape_data)); out->share_lod(x); return; } PADDLE_ENFORCE_GT(shape_data.size(), 0, phi::errors::InvalidArgument( "The shape's size in ReshapeOp can't be zero.")); InferMetaFromVecValue(x, shape_data, out); } void ReshapeWithXShapeInferMeta(const MetaTensor& x, const IntArray& shape, MetaTensor* out, MetaTensor* xshape, MetaConfig config) { PADDLE_ENFORCE_NOT_NULL( xshape, phi::errors::InvalidArgument( "Output(XShape) of ReshapeOp should not be null.")); const auto& x_dims = x.dims(); std::vector xshape_dims(x_dims.size() + 1); xshape_dims[0] = 0; for (int i = 0; i < x_dims.size(); ++i) { xshape_dims[i + 1] = x_dims[i]; } xshape->set_dims(phi::make_ddim(xshape_dims)); xshape->share_lod(x); ReshapeInferMeta(x, shape, out, config); } void ReverseInferMeta(const MetaTensor& x, const std::vector& axis, MetaTensor* out) { PADDLE_ENFORCE_NE(axis.empty(), true, phi::errors::InvalidArgument("'axis' can not be empty.")); const auto& x_dims = x.dims(); for (int a : axis) { PADDLE_ENFORCE_LT(a, x_dims.size(), phi::errors::OutOfRange( "The axis must be less than input tensor's rank. " "but got %d >= %d", a, x_dims.size())); PADDLE_ENFORCE_GE( a, -x_dims.size(), phi::errors::OutOfRange( "The axis must be greater than the negative number of " "input tensor's rank, but got %d < %d", a, -x_dims.size())); } out->share_meta(x); } void ReverseArrayInferMeta(const std::vector& x, const std::vector& axis, std::vector out) { PADDLE_ENFORCE_EQ( axis.size(), 1, phi::errors::InvalidArgument( "The size of axis must be 1 when the Input(X) is LoDTensorArray, " "but received %d.", axis.size())); PADDLE_ENFORCE_EQ( axis[0], 0, phi::errors::InvalidArgument("The value of axis should be 1 when " "the Input(X) is LoDTensorArray, " "but received %d.", axis[0])); } void RollInferMeta(const MetaTensor& x, const IntArray& shifts, const std::vector& axis, MetaTensor* out) { auto shifts_data = shifts.GetData(); if (axis.size() != 0) { PADDLE_ENFORCE_EQ( axis.size(), shifts_data.size(), phi::errors::InvalidArgument("When dims.size() != 0, dims.size() " "should be equal to " "shifts.size(). But received " "dims.size() = %d, shifts.size() = %d", axis.size(), shifts_data.size())); } else { PADDLE_ENFORCE_EQ( shifts_data.size(), 1, phi::errors::InvalidArgument("When dims.size() == 0, shifts.size() " "should be equal to 1, But received " "shifts.size() = %d", shifts_data.size())); } out->set_dims(x.dims()); out->share_lod(x); out->set_dtype(x.dtype()); } void RReluInferMeta(const MetaTensor& x, float lower, float upper, bool is_test, MetaTensor* out, MetaTensor* noise) { auto x_dims = x.dims(); PADDLE_ENFORCE_GE(lower, 0, phi::errors::InvalidArgument( "The lower value should be greater than or equal to 0. " "But received lower value = %f.", lower)); PADDLE_ENFORCE_LE(upper, 1, phi::errors::InvalidArgument( "The upper value should be less than or equal to 1. " "But received upper value = %f.", upper)); PADDLE_ENFORCE_GE( upper, lower, phi::errors::InvalidArgument( "The upper value should be greater than or equal to lower value " "But received upper value = %f, lower value = %f.", upper, lower)); out->set_dims(x_dims); out->set_dtype(x.dtype()); out->set_layout(x.layout()); out->share_lod(x); if (noise != nullptr) { noise->set_dims(x_dims); noise->set_dtype(x.dtype()); noise->set_layout(x.layout()); } } void RReluGradInferMeta(const MetaTensor& out_grad, const MetaTensor& noise, MetaTensor* x_grad) { auto do_dims = out_grad.dims(); x_grad->set_dims(do_dims); x_grad->set_dtype(out_grad.dtype()); x_grad->share_lod(out_grad); } void SetValueInferMeta(const MetaTensor& x, MetaTensor* out) { auto in_dims = x.dims(); PADDLE_ENFORCE_LT( in_dims.size(), 7, phi::errors::InvalidArgument( "The rank of input should be less than 7, but received %d.", in_dims.size())); } void ShapeInferMeta(const MetaTensor& input, MetaTensor* out) { auto in_dim = input.dims(); out->set_dims(phi::make_ddim({in_dim.size()})); out->set_dtype(DataType::INT32); } void ShardIndexInferMeta(const MetaTensor& in, int index_num, int nshards, int shard_id, int ignore_value, MetaTensor* out, MetaConfig config) { auto x_dims = in.dims(); PADDLE_ENFORCE_GE( x_dims.size(), 2, phi::errors::InvalidArgument("Rank of Input(X) should be at least 2, " "but the value given is %d.", x_dims.size())); if (config.is_runtime || x_dims[x_dims.size() - 1] > 0) { PADDLE_ENFORCE_EQ(x_dims[x_dims.size() - 1], 1U, phi::errors::InvalidArgument( "The last dimension of Input(X) should be 1, " "but the value given is %d.", x_dims[x_dims.size() - 1])); } out->set_dims(x_dims); out->share_lod(in); out->set_dtype(in.dtype()); } void SizeInferMeta(const MetaTensor& input, MetaTensor* out) { out->set_dtype(DataType::INT64); out->set_dims({1}); } void SliceRawInferMeta(const MetaTensor& input, const std::vector& axes, const IntArray& starts_arr, const IntArray& ends_arr, const std::vector& infer_flags_t, const std::vector& decrease_axis, MetaTensor* out, MetaConfig config) { auto in_dims = input.dims(); PADDLE_ENFORCE_LT( in_dims.size(), 7, phi::errors::InvalidArgument("The rank of input should be less than 7.")); DDim out_dims(in_dims); std::vector infer_flags = infer_flags_t; if (infer_flags.empty()) { // Initialize infer_flags with 1. // To be compatible with other op tests in which infer_flags is not set. infer_flags = std::vector(axes.size(), 1); } auto new_axes = axes; for (auto& axis : new_axes) { if (axis < 0) { axis = std::max(int64_t(0), axis + int64_t(in_dims.size())); } } // 2.1 Check attrs. std::vector starts = starts_arr.GetData(); std::vector ends = ends_arr.GetData(); phi::funcs::CheckAndUpdateSliceAttrs( in_dims, new_axes, &starts, &ends, nullptr, &infer_flags); auto slice_dims = phi::funcs::GetSliceDims( in_dims, new_axes, starts, ends, nullptr, &infer_flags); if (config.is_runtime) { out_dims = phi::funcs::GetDecreasedDims( slice_dims, decrease_axis, &infer_flags); } else { out_dims = phi::funcs::GetDecreasedDims( slice_dims, decrease_axis, nullptr); } out->set_dims(out_dims); if (new_axes.size() > 0 && new_axes[0] != 0) { out->share_lod(input); } } void SoftmaxInferMeta(const MetaTensor& x, int axis, MetaTensor* out) { auto dim_x = x.dims(); auto rank_x = dim_x.size(); PADDLE_ENFORCE_GE(axis, -rank_x, phi::errors::InvalidArgument( "Attr(axis) value should be in range [-R, R-1], " "R is the rank of Input(X).")); PADDLE_ENFORCE_LT(axis, rank_x, phi::errors::InvalidArgument( "Attr(axis) value should be in range [-R, R-1], " "R is the rank of Input(X).")); out->set_dims(x.dims()); out->set_dtype(x.dtype()); out->share_lod(x); } void SplitInferMeta(const MetaTensor& x, const IntArray& num_or_sections, const Scalar& axis, std::vector out, MetaConfig config) { if (axis.dtype() == DataType::FLOAT32 || axis.dtype() == DataType::FLOAT64) { PADDLE_THROW( phi::errors::InvalidArgument("%s(): argument (position 3) must be " "int, but got %s", "split", "float")); // NOLINT } int axis_value = axis.to(); int rank = x.dims().size(); PADDLE_ENFORCE_EQ( axis_value >= -rank && axis_value < rank, true, phi::errors::InvalidArgument( "The axis is expected to be in range of [%d, %d), but got %d", -rank, rank, axis_value)); if (axis_value < 0) { axis_value = axis_value + rank; } auto input_axis_dim = x.dims().at(axis_value); auto num_or_sections_data = num_or_sections.GetData(); // step1: get formated sections std::vector sections; // num_or_sections is a number if (num_or_sections_data.size() == 1) { int num = num_or_sections_data.at(0); PADDLE_ENFORCE_EQ(input_axis_dim % num, 0, phi::errors::InvalidArgument( "The input's size along the split dimension " "must be evenly divisible by Attr(num_or_sections). " "But received Attr(num_or_sections) " "= %d, input(X)'s shape = [%s], Attr(dim) = %d.", num, x.dims(), axis_value)); for (int i = 0; i < num; ++i) { sections.push_back(input_axis_dim / num); } } else { // num_or_sections is a sections const int unknow_dim_val = -1; int unknow_dim_idx = -1; int num_of_unknow = 0; int sum_of_section = 0; for (size_t i = 0; i < num_or_sections_data.size(); ++i) { sections.push_back(num_or_sections_data[i]); if (num_or_sections_data[i] == unknow_dim_val) { num_of_unknow++; unknow_dim_idx = i; } else { sum_of_section += num_or_sections_data[i]; } } if (config.is_runtime) { PADDLE_ENFORCE_LE(num_of_unknow, 1, phi::errors::InvalidArgument( "Only one dimension value of Attr(num_or_sections) " "in SplitOp can be -1. " "But received Attr(num_or_sections) = [%s].", phi::make_ddim(num_or_sections_data))); } if (unknow_dim_idx != -1) { // for example, input shape = [4 ,5], axis = 1, sections = [2, 3, -1]. // input_axis_dim = 5, sum_of_sections = 5. // the following check will fail. PADDLE_ENFORCE_LT( sum_of_section, input_axis_dim, phi::errors::InvalidArgument( "Sum of Attr(num_or_sections) other than unknown section " "must be less than the input's " "size " "along the split dimension. But received Attr(num_or_sections) " "= [%s], input(X)'s shape = [%s], Attr(dim) = %d.", phi::make_ddim(num_or_sections_data), x.dims(), axis_value)); if (config.is_runtime) { sections[unknow_dim_idx] = input_axis_dim - sum_of_section; } } else { PADDLE_ENFORCE_EQ( sum_of_section, input_axis_dim, phi::errors::InvalidArgument( "Sum of Attr(num_or_sections) must be equal to the input's " "size " "along the split dimension. But received Attr(num_or_sections)" " = [%s], input(X)'s shape = [%s], Attr(dim) = %d.", phi::make_ddim(num_or_sections_data), x.dims(), axis_value)); } } // setp2: fill out dims std::vector out_dims(sections.size(), x.dims()); if (config.is_runtime || input_axis_dim > 0) { for (size_t i = 0; i < sections.size(); ++i) { out_dims[i][axis_value] = sections[i]; } } else { for (size_t i = 0; i < sections.size(); ++i) { out_dims[i][axis_value] = -1; } } for (size_t i = 0; i < sections.size(); ++i) { if (axis_value != 0) { // Only pass LoD when not spliting along the first dim. out[i]->set_dtype(x.dtype()); out[i]->set_dims(out_dims[i]); out[i]->set_layout(x.layout()); } else { out[i]->set_dtype(x.dtype()); out[i]->set_dims(out_dims[i]); out[i]->set_layout(x.layout()); out[i]->share_lod(x); } } } void SquaredL2NormInferMeta(const MetaTensor& x, MetaTensor* out) { out->set_dims({1}); } void SqueezeInferMeta(const MetaTensor& x, const std::vector& axes, MetaTensor* out) { const auto& x_dims = x.dims(); // Check input tensor dims (<6) Eigen limit. PADDLE_ENFORCE_LE(x_dims.size(), 6, phi::errors::InvalidArgument( "The dimensions of Input(X) " "should be in the range of [1, 6] (Eigen limit)." "But received X's dimensions = %d, X's shape = [%s].", x_dims.size(), x_dims)); auto out_dims = funcs::GetOutputSqueezeShape(axes, x_dims, false); out->set_dims(out_dims); if (x_dims[0] == out_dims[0]) { // Only pass LoD when the first dimension of output and Input(X) // are the same. out->share_lod(x); } out->set_dtype(x.dtype()); } void SqueezeWithXShapeInferMeta(const MetaTensor& x, const std::vector& axes, MetaTensor* out, MetaTensor* xshape) { SqueezeInferMeta(x, axes, out); const auto& x_dims = x.dims(); std::vector xshape_dims(x_dims.size() + 1); xshape_dims[0] = 0; for (int i = 0; i < x_dims.size(); ++i) { xshape_dims[i + 1] = x_dims[i]; } if (xshape) { xshape->set_dims(phi::make_ddim(xshape_dims)); xshape->share_lod(x); xshape->set_dtype(x.dtype()); } } void StridedSliceRawInferMeta(const MetaTensor& x, const std::vector& axes, const IntArray& starts, const IntArray& ends, const IntArray& strides, const std::vector& infer_flags, const std::vector& decrease_axis, MetaTensor* out, MetaConfig config) { auto in_dims = x.dims(); PADDLE_ENFORCE_LT( in_dims.size(), 7, errors::InvalidArgument( "The dimension of StridedSlice operator's input should be less " "than 7, but received dimension is %d.", in_dims.size())); auto starts_ = starts.GetData(); auto ends_ = ends.GetData(); auto strides_ = strides.GetData(); auto starts_size = starts_.size(); auto ends_size = ends_.size(); auto strides_size = strides_.size(); for (size_t i = 0; i < axes.size(); ++i) { PADDLE_ENFORCE_GE( axes[i], 0, errors::InvalidArgument("The axis should be greater than or equal to 0." "But received %d of axes[%d]", axes[i], i)); PADDLE_ENFORCE_LT( axes[i], in_dims.size(), errors::InvalidArgument( "The axes should be less than or equal to input tensor's rank." "But received %d of axes[%d], input tensor shape [%d]", axes[i], i, in_dims.size())); } auto tensor_input = false; auto HasInput = [](const IntArray& arr) { return arr.FromTensor(); }; if (HasInput(starts) || HasInput(ends) || HasInput(strides)) { tensor_input = true; } if (!HasInput(ends)) { PADDLE_ENFORCE_EQ( ends_size, axes.size(), errors::InvalidArgument( "The size of ends attribute in StridedSlice operator is not " "equal to the size of axes attribute. The ends attribute's size " "is %d, axes attribute's size is %d.", ends_size, axes.size())); } if (!HasInput(starts)) { PADDLE_ENFORCE_EQ( starts_size, axes.size(), errors::InvalidArgument( "The size of starts attribute in StridedSlice operator is not " "equal to the size of axes attribute. The starts attribute's " "size is %d, axes attribute's size is %d.", starts_size, axes.size())); } if (!HasInput(strides)) { PADDLE_ENFORCE_EQ( strides_size, axes.size(), errors::InvalidArgument( "The size of strides attribute in StridedSlice operator is not " "equal to the size of axes attribute. The strides attribute's " "size is %d, axes attribute's size is %d.", strides_size, axes.size())); } // we need to analysis strided slice op is valid for // the parameter that we get from python front std::vector out_dims_vector(in_dims.size(), -1); if (!tensor_input || config.is_runtime) { phi::funcs::StridedSliceOutDims(starts_, ends_, strides_, axes, infer_flags, in_dims, decrease_axis, out_dims_vector.data(), axes.size(), true); } DDim out_dims(phi::make_ddim(out_dims_vector)); // generate new shape if (decrease_axis.size() > 0) { std::vector new_out_shape; for (size_t i = 0; i < decrease_axis.size(); ++i) { if (config.is_runtime && infer_flags[i] != -1) { PADDLE_ENFORCE_EQ(out_dims[decrease_axis[i]], 1, errors::InvalidArgument( "the size of decrease dimension should be 1, " "but received %d.", out_dims[decrease_axis[i]])); } out_dims[decrease_axis[i]] = 0; } for (int i = 0; i < out_dims.size(); ++i) { if (out_dims[i] != 0) { new_out_shape.push_back(out_dims[i]); } } if (new_out_shape.size() == 0) { new_out_shape.push_back(1); } out_dims = phi::make_ddim(new_out_shape); } VLOG(1) << "out_dims: " << out_dims; out->set_dims(out_dims); out->share_lod(x); out->set_dtype(x.dtype()); } void StridedSliceInferMeta(const MetaTensor& x, const std::vector& axes, const IntArray& starts, const IntArray& ends, const IntArray& strides, MetaTensor* out, MetaConfig config) { std::vector infer_flags(axes.size(), 1); std::vector decrease_axis; StridedSliceRawInferMeta( x, axes, starts, ends, strides, infer_flags, decrease_axis, out, config); } /* Why not use SumRawInferMeta directly? Because we need make InferMetaFunction's args follow the design of api.yaml */ void SumInferMeta(const MetaTensor& x, const std::vector& axis, DataType dtype, bool keep_dim, MetaTensor* out) { bool reduce_all = false; SumRawInferMeta(x, axis, keep_dim, reduce_all, dtype, out); } void SumRawInferMeta(const MetaTensor& x, const std::vector& axis, bool keep_dim, bool reduce_all, DataType dtype, MetaTensor* out) { DDim out_dim = ReduceInferDim(x, axis, keep_dim, reduce_all); DataType out_dtype; if (dtype != DataType::UNDEFINED) { out_dtype = dtype; } else { if (x.dtype() == DataType::BOOL || x.dtype() == DataType::INT32) { out_dtype = DataType::INT64; } else { out_dtype = x.dtype(); } } out->set_dims(out_dim); out->set_dtype(out_dtype); out->set_layout(x.layout()); } void SvdInferMeta(const MetaTensor& x, bool full_matrices, MetaTensor* u, MetaTensor* s, MetaTensor* vh) { auto UDDim = [](const DDim& x_dim, int k) { // get x_dim and return the ddim of U auto x_vec = vectorize(x_dim); x_vec[x_vec.size() - 1] = k; return phi::make_ddim(x_vec); }; auto VHDDim = [](const DDim& x_dim, int k) { // get x_dim and return the ddim of U auto x_vec = vectorize(x_dim); x_vec[x_vec.size() - 2] = k; return phi::make_ddim(x_vec); }; auto SDDim = [](const DDim& x_dim, int k) { // get x_dim and return the ddim of U auto x_vec = vectorize(x_dim); x_vec[x_vec.size() - 2] = k; x_vec.erase(x_vec.end() - 1); // rank - 1 return phi::make_ddim(x_vec); }; auto in_dims = x.dims(); int x_rank = in_dims.size(); PADDLE_ENFORCE_GE( in_dims.size(), 2, phi::errors::InvalidArgument("the rank of input must greater than 2")); int m = in_dims[x_rank - 2]; int n = in_dims[x_rank - 1]; int k = std::min(m, n); u->set_dims(!full_matrices ? UDDim(in_dims, k) : UDDim(in_dims, m)); vh->set_dims(!full_matrices ? VHDDim(in_dims, k) : VHDDim(in_dims, n)); s->set_dims(SDDim(in_dims, k)); u->share_lod(x); vh->share_lod(x); s->share_lod(x); u->set_dtype(x.dtype()); vh->set_dtype(x.dtype()); s->set_dtype(x.dtype()); } void TemporalShiftInferMeta(const MetaTensor& x, int seg_num, float shift_ratio, const std::string& data_format, MetaTensor* out, MetaConfig config) { auto dim_x = x.dims(); PADDLE_ENFORCE_EQ(dim_x.size(), 4, phi::errors::InvalidArgument( "Input(X) rank should be 4 in shape of [N*T, C, H, " "W], but received X rank(%d)", dim_x.size())); PADDLE_ENFORCE_GT( seg_num, 0, phi::errors::InvalidArgument( "Attr(seg_num) should be greater than 0, but received %d", seg_num)); PADDLE_ENFORCE_GT( shift_ratio, 0., phi::errors::InvalidArgument( "Attr(shift_ratio) should be greater than 0, but received %d", shift_ratio)); PADDLE_ENFORCE_LT( shift_ratio, 0.5, phi::errors::InvalidArgument( "Attr(shift_ratio) should be less than 0.5, but received %d", shift_ratio)); if (config.is_runtime) { PADDLE_ENFORCE_EQ(dim_x[0] % seg_num, 0, phi::errors::InvalidArgument( "Input(X) dimension[0] should be divided exactly " "by Attr(seg_num), but received X dimension[0](%d) " "mod seg_num(%d) != 0", dim_x[0], seg_num)); } out->share_meta(x); } void TileInferMeta(const MetaTensor& x, const IntArray& repeat_times, MetaTensor* out, MetaConfig config) { #define MAX_RANK_SUPPORTED 6 auto repeat_times_data = repeat_times.GetData(); auto x_dims = x.dims(); if (repeat_times_data.size() == 0) { repeat_times_data = std::vector(x_dims.size(), -1); } PADDLE_ENFORCE_LE( x_dims.size(), MAX_RANK_SUPPORTED, errors::InvalidArgument( "The rank of the input 'x' for tile op " "must not be greater than %d, but the value received is %d.", MAX_RANK_SUPPORTED, x_dims.size())); PADDLE_ENFORCE_LE( repeat_times_data.size(), MAX_RANK_SUPPORTED, errors::InvalidArgument( "The size of the shape of input 'repeat_times' for tile op " "must not be greater than %d, but the value received is %d.", MAX_RANK_SUPPORTED, repeat_times_data.size())); PADDLE_ENFORCE_GE( repeat_times_data.size(), 1, errors::InvalidArgument( "The size of the shape of input 'repeat_times' for tile op " "must be positive integers, but the value received is %d.", repeat_times_data.size())); auto out_rank = std::max(static_cast(x_dims.size()), repeat_times_data.size()); std::vector out_shape(out_rank); auto x_dim_vec = phi::vectorize(x_dims); if (x_dim_vec.size() > repeat_times_data.size()) { auto diff = x_dim_vec.size() - repeat_times_data.size(); repeat_times_data.insert(repeat_times_data.begin(), diff, -1); } else { auto diff = repeat_times_data.size() - x_dim_vec.size(); x_dim_vec.insert(x_dim_vec.begin(), diff, -1); } for (size_t i = 0; i < repeat_times_data.size(); ++i) { if (x_dim_vec[i] == -1 || repeat_times_data[i] == -1) { out_shape[i] = -1; } else { PADDLE_ENFORCE_GT( repeat_times_data[i], 0, errors::InvalidArgument( "Every element of the input 'repeat_times' for tile op must be " "greater than 0, but the value given is %d.", repeat_times_data[i])); out_shape[i] = x_dim_vec[i] * repeat_times_data[i]; } } out->set_dims(phi::make_ddim(out_shape)); if (out_shape[0] == x_dims[0]) { out->share_lod(x); } out->set_dtype(x.dtype()); } void TopKInferMeta(const MetaTensor& x, const Scalar& k_scalar, int axis, bool largest, bool sorted, MetaTensor* out, MetaTensor* indices, MetaConfig config) { auto input_dims = x.dims(); const int& dim_size = input_dims.size(); PADDLE_ENFORCE_EQ( (axis < dim_size) && (axis >= (-1 * dim_size)), true, phi::errors::InvalidArgument( "the axis of topk must be [-%d, %d), but you set axis is %d", dim_size, dim_size, axis)); if (axis < 0) axis += dim_size; int k = k_scalar.to(); if (k_scalar.FromTensor()) { k = -1; } else { PADDLE_ENFORCE_EQ(k >= 1, true, phi::errors::InvalidArgument( "the attribute of k in the topk must >= 1 or be a " "Tensor, but received %d .", k)); } PADDLE_ENFORCE_GE( input_dims.size(), 1, phi::errors::InvalidArgument("input of topk must have >= 1d shape")); phi::DDim dims = input_dims; dims[axis] = k; out->set_dims(dims); out->share_lod(x); out->set_dtype(x.dtype()); indices->set_dims(dims); indices->share_lod(x); indices->set_dtype(DataType::INT64); } void TraceInferMeta( const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out) { int dim1 = axis1; int dim2 = axis2; auto x_dims = x.dims(); int dim1_ = dim1 < 0 ? x_dims.size() + dim1 : dim1; int dim2_ = dim2 < 0 ? x_dims.size() + dim2 : dim2; PADDLE_ENFORCE_GE( x_dims.size(), 2, phi::errors::OutOfRange( "Input's dim is out of range (expected at least 2, but got %ld).", x_dims.size())); PADDLE_ENFORCE_LT( dim1_, x_dims.size(), phi::errors::OutOfRange( "Attr(dim1) is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size()), (x_dims.size() - 1), dim1)); PADDLE_ENFORCE_LT( dim2_, x_dims.size(), phi::errors::OutOfRange( "Attr(dim2) is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size()), (x_dims.size() - 1), dim2)); PADDLE_ENFORCE_NE( dim1_, dim2_, phi::errors::InvalidArgument("The dimensions should not be identical " "%ld vs %ld.", dim1, dim2)); auto sizes = vectorize(x_dims); if (x_dims.size() == 2) { sizes.clear(); sizes.push_back(1); } else { sizes.erase(sizes.begin() + std::max(dim1_, dim2_)); sizes.erase(sizes.begin() + std::min(dim1_, dim2_)); } out->set_dims(phi::make_ddim(sizes)); out->set_dtype(x.dtype()); } void TransferLayoutInferMeta(const MetaTensor& x, DataLayout layout, MetaTensor* out) { out->set_dims(x.dims()); out->set_dtype(x.dtype()); out->set_layout(layout); } void TransposeInferMeta(const MetaTensor& x, const std::vector& axis, MetaTensor* out) { auto x_dims = x.dims(); size_t x_rank = x_dims.size(); size_t axis_size = axis.size(); PADDLE_ENFORCE_EQ( x_rank, axis_size, errors::InvalidArgument("The input tensor's dimension " "should be equal to the axis's size. " "But received input tensor's dimension is %d, " "axis's size is %d", x_rank, axis_size)); std::vector count(axis_size, 0); for (size_t i = 0; i < axis_size; i++) { PADDLE_ENFORCE_GE( axis[i], 0, errors::InvalidArgument("The axis should be greater than or equal to 0." "But received %d of axis[%d]", axis[i], i)); PADDLE_ENFORCE_EQ( axis[i] < static_cast(axis_size) && ++count[axis[i]] == 1, true, errors::InvalidArgument( "Each element of Attribute axis should " "be a unique value range from 0 to (dims - 1), " "where the dims is the axis's size, " "unique value means this axis value can appear only once. " "But received axis[%d] is %d, axis_size is %d, " "count[axis[%d]] is %d", i, axis[i], axis_size, i, count[axis[i]])); } phi::DDim out_dims(x_dims); for (size_t i = 0; i < axis_size; ++i) { out_dims[i] = x_dims[axis[i]]; } out->set_dims(out_dims); out->set_dtype(x.dtype()); } void TransposeGradInferMeta(const MetaTensor& x, const std::vector& axis, MetaTensor* out) { std::vector reversed_axis(axis); for (size_t i = 0; i < axis.size(); i++) { reversed_axis[axis[i]] = i; } TransposeInferMeta(x, reversed_axis, out); } void UnbindInferMeta(const MetaTensor& x, int axis, std::vector outs) { auto in_dims = x.dims(); std::vector out_dim; axis = axis < 0 ? in_dims.size() + axis : axis; for (int i = 0; i < in_dims.size(); ++i) { if (i != axis) out_dim.push_back(in_dims[i]); } auto out_dims = phi::make_ddim(out_dim); for (size_t i = 0; i < outs.size(); ++i) { outs[i]->set_dtype(x.dtype()); outs[i]->set_dims(out_dims); outs[i]->set_layout(x.layout()); outs[i]->share_lod(x); } } void TrilTriuInferMeta(const MetaTensor& x, int diagonal, bool lower, MetaTensor* out) { const auto& x_dims = x.dims(); PADDLE_ENFORCE_GE(x_dims.size(), 2, phi::errors::InvalidArgument( "Input(X)'s rank must be at least 2 in TrilTriuOp.")); out->set_dims(x.dims()); out->share_lod(x); out->set_dtype(x.dtype()); } void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out) { out->share_meta(x); } // meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1] void UnchangedInferMetaCheckAxis(const MetaTensor& x, int axis, MetaTensor* out) { auto rank = x.dims().size(); PADDLE_ENFORCE_GE( axis, -rank, phi::errors::InvalidArgument( "Attr(axis) value should be in range [-R, R-1], " "R is the rank of Input(X). But received axis: %d, R: %d.", axis, rank)); PADDLE_ENFORCE_LT( axis, rank, phi::errors::InvalidArgument( "Attr(axis) value should be in range [-R, R-1], " "R is the rank of Input(X). But received axis: %d, R: %d.", axis, rank)); out->share_meta(x); } void UnfoldInferMeta(const MetaTensor& x, const std::vector& kernel_sizes, const std::vector& strides, const std::vector& paddings, const std::vector& dilations, MetaTensor* out, MetaConfig config) { auto in_dims = x.dims(); // Only [N, C, H, W] input supported now PADDLE_ENFORCE_EQ( in_dims.size(), 4, phi::errors::InvalidArgument( "Input should be 4-D tensor of format [N, C, H, W], but get %u", in_dims.size())); PADDLE_ENFORCE_EQ( in_dims.size() - kernel_sizes.size(), 2U, phi::errors::InvalidArgument( "The dims of X should be larger than that of kernel_sizes " "by a number of 2, due to the batch size and input channel dim. " "But received dims(X:%u) - dims(kernel_sizes:%u) != 2", in_dims.size(), kernel_sizes.size())); PADDLE_ENFORCE_EQ( strides.size(), kernel_sizes.size(), phi::errors::InvalidArgument( "The dims of strides should be the same with that of kernel_sizes. " "But received dims(strides: %u) != dims(kernel_sizes: %u).", strides.size(), kernel_sizes.size())); PADDLE_ENFORCE_EQ( paddings.size(), 2 * strides.size(), phi::errors::InvalidArgument( "The dims of paddings should be 2 times of that of strides. " "But received dims(paddings: %u) != 2*dims(strides: %u).", paddings.size(), strides.size())); PADDLE_ENFORCE_EQ( strides.size(), dilations.size(), phi::errors::InvalidArgument( "The dims of strides should be the same with that of dilations. " "But received dims(strides: %u) != dims(dilations: %u).", strides.size(), dilations.size())); // check kernel_sizes PADDLE_ENFORCE_GT(kernel_sizes[0], 0, phi::errors::InvalidArgument( "The `kernel_sizes` should be greater than zero, " "but received kernel_height: %d kernel_width: %d.", kernel_sizes[0], kernel_sizes[1])); PADDLE_ENFORCE_GT(kernel_sizes[1], 0, phi::errors::InvalidArgument( "The `kernel_sizes` should be greater than zero, " "but received kernel_height: %d kernel_width: %d.", kernel_sizes[0], kernel_sizes[1])); // check strides PADDLE_ENFORCE_GT(strides[0], 0, phi::errors::InvalidArgument( "The `strides` should be greater than zero, " "but received strides_height: %d strides_width: %d.", strides[0], strides[1])); PADDLE_ENFORCE_GT(strides[1], 0, phi::errors::InvalidArgument( "The `strides` should be greater than zero, " "but received strides_height: %d strides_width: %d.", strides[0], strides[1])); // check dilations PADDLE_ENFORCE_GT( dilations[0], 0, phi::errors::InvalidArgument( "The `dilations` should be greater than zero, " "but received dilations_height: %d dilations_width: %d.", dilations[0], dilations[1])); PADDLE_ENFORCE_GT( dilations[1], 0, phi::errors::InvalidArgument( "The `dilations` should be greater than zero, " "but received dilations_height: %d dilations_width: %d.", dilations[0], dilations[1])); std::vector out_dims; out_dims.push_back(in_dims[0]); int output_channels = in_dims[1] * kernel_sizes[0] * kernel_sizes[1]; out_dims.push_back(output_channels); int output_height = phi::funcs::CalcOutputSize(in_dims[2], kernel_sizes[0], dilations[0], paddings[0], paddings[2], strides[0]); int output_width = phi::funcs::CalcOutputSize(in_dims[3], kernel_sizes[1], dilations[1], paddings[1], paddings[3], strides[1]); if (config.is_runtime) { // only check output height and width in runtime PADDLE_ENFORCE_GT( output_height, 0, phi::errors::InvalidArgument( "The sliding blocks calculated from input spatial size " "(%d, %d), kernel_sizes (%d, %d), strides (%d, %d), " "dilations (%d, %d), is (%d, %d), which should be a " "positive integer.", in_dims[2], in_dims[3], kernel_sizes[0], kernel_sizes[1], strides[0], strides[1], dilations[0], dilations[1], output_height, output_width)); PADDLE_ENFORCE_GT( output_width, 0, phi::errors::InvalidArgument( "The sliding blocks calculated from input spatial size " "(%d, %d), kernel_sizes (%d, %d), strides (%d, %d), " "dilations (%d, %d), is (%d, %d), which should be a " "positive integer.", in_dims[2], in_dims[3], kernel_sizes[0], kernel_sizes[1], strides[0], strides[1], dilations[0], dilations[1], output_height, output_width)); } int output_col_length = output_height * output_width; out_dims.push_back(output_col_length); out->set_dims(phi::make_ddim(out_dims)); } void UniqueConsecutiveInferMeta(const MetaTensor& x, bool return_inverse, bool return_counts, const std::vector& axis, int dtype, MetaTensor* out, MetaTensor* index, MetaTensor* counts) { PADDLE_ENFORCE_NE(out, nullptr, phi::errors::InvalidArgument( "unique_consecutive should have output tensor out.")); auto in_dims = x.dims(); if (return_inverse) { PADDLE_ENFORCE_NE( index, nullptr, phi::errors::InvalidArgument("Tensor index should not be null if " "return_inverse is set to True.")); } if (return_counts) { PADDLE_ENFORCE_NE( counts, nullptr, phi::errors::InvalidArgument("Tensor counts should not be null if " "return_counts is set to True.")); } if (axis.empty()) { out->set_dims({-1}); out->set_dtype(x.dtype()); if (return_inverse) { index->set_dims({phi::product(in_dims)}); } } else { int axis_value = axis[0]; if (axis_value < 0) { axis_value += in_dims.size(); } PADDLE_ENFORCE_LT( axis_value, in_dims.size(), phi::errors::InvalidArgument("The axis(%d) should be less than " "the dimension size(%d) of x.", axis_value, in_dims.size())); auto out_dims = in_dims; out_dims[axis_value] = -1; out->set_dims(out_dims); out->set_dtype(x.dtype()); if (return_inverse) { index->set_dims({in_dims[axis_value]}); } } if (return_counts) { counts->set_dims({-1}); } } void UniqueInferMeta(const MetaTensor& x, bool return_index, bool return_inverse, bool return_counts, const std::vector& axis, DataType dtype, MetaTensor* out, MetaTensor* indices, MetaTensor* index, MetaTensor* counts) { bool is_sorted = true; UniqueRawInferMeta(x, return_index, return_inverse, return_counts, axis, dtype, is_sorted, out, indices, index, counts); } void UniqueRawInferMeta(const MetaTensor& x, bool return_index, bool return_inverse, bool return_counts, const std::vector& axis, DataType dtype, bool is_sorted, MetaTensor* out, MetaTensor* indices, MetaTensor* index, MetaTensor* counts) { if (!is_sorted) { PADDLE_ENFORCE_EQ( x.dims().size(), 1, phi::errors::InvalidArgument("The Input(X) should be 1-D Tensor, " "But now the dims of Input(X) is %d.", x.dims().size())); out->set_dims(phi::make_ddim({-1})); index->set_dims(x.dims()); return; } if (axis.empty()) { out->set_dims(phi::make_ddim({-1})); if (return_inverse) { index->set_dims(phi::make_ddim({phi::product(x.dims())})); } } else { int axis_value = axis[0]; if (axis_value < 0) { axis_value += x.dims().size(); } PADDLE_ENFORCE_LT( axis_value, x.dims().size(), phi::errors::InvalidArgument("The axis(%d) should be less than " "the dimension size(%d) of x.", axis_value, x.dims().size())); auto out_dims = x.dims(); out_dims[axis_value] = -1; out->set_dims(out_dims); if (return_inverse) { index->set_dims(phi::make_ddim({x.dims()[axis_value]})); } } if (return_index) { indices->set_dims(phi::make_ddim({-1})); } if (return_counts) { counts->set_dims(phi::make_ddim({-1})); } } void UnsqueezeInferMeta(const MetaTensor& x, const IntArray& axes, MetaTensor* out, MetaConfig config) { const auto& x_dims = x.dims(); // Validity Check: input tensor dims (<6). PADDLE_ENFORCE_LE(x_dims.size(), 6, phi::errors::InvalidArgument( "Invalid " "dimensions, the rank of Input(X) " "should be in the range of [1, 6] (Eigen limit)")); if (!config.is_runtime && axes.FromTensor()) { // compile time infershape. set all elements to -1. int output_size = x.dims().size() + axes.GetData().size(); std::vector vec_out_dims(output_size, -1); out->set_dtype(x.dtype()); out->set_dims(phi::make_ddim(vec_out_dims)); } else if (!axes.GetData().empty()) { std::vector tmp; tmp.reserve(axes.GetData().size()); std::for_each(axes.GetData().begin(), axes.GetData().end(), [&tmp](const int64_t& t) { tmp.push_back(t); }); auto out_dims = funcs::GetUnsqueezeShape(tmp, x_dims); out->set_dims(out_dims); if (x_dims[0] == out_dims[0]) { out->share_lod(x); } out->set_dtype(x.dtype()); } } void UnsqueezeWithXShapeInferMeta(const MetaTensor& x, const IntArray& axes, MetaTensor* out, MetaTensor* xshape, MetaConfig config) { const auto& x_dims = x.dims(); UnsqueezeInferMeta(x, axes, out, config); // set xshape dims. std::vector xshape_dims(x_dims.size() + 1); xshape_dims[0] = 0; for (int i = 0; i < x_dims.size(); ++i) { xshape_dims[i + 1] = x_dims[i]; } if (xshape) { xshape->set_dims(phi::make_ddim(xshape_dims)); xshape->share_lod(x); xshape->set_dtype(x.dtype()); } } void UnStackInferMeta(const MetaTensor& x, int axis, int num, std::vector outs) { auto x_dim = x.dims(); int rank = x_dim.size(); PADDLE_ENFORCE_GE(axis, -rank, phi::errors::InvalidArgument( "The attribute axis is out of range, it must be " "inside [-rank, rank), where rank = %d", rank)); PADDLE_ENFORCE_LT(axis, rank, phi::errors::InvalidArgument( "The attribute axis is out of range, it must be " "inside [-rank, rank), where rank = %d", rank)); if (axis < 0) axis += rank; size_t output_count = outs.size(); PADDLE_ENFORCE_EQ(output_count, static_cast(num), phi::errors::InvalidArgument( "Number of Outputs(Y) is wrong. Got %d , but it must " "equal to attribute num which is %d.", output_count, static_cast(num))); if (x_dim[axis] > 0) { PADDLE_ENFORCE_EQ( num, x_dim[axis], phi::errors::InvalidArgument( "The number of attribute num is not equal to the length of the " "%d axis of Input(X). Expect %d but got %d.", axis, x_dim[axis], num)); } auto vec = phi::vectorize(x_dim); vec.erase(vec.begin() + axis); for (size_t i = 0; i < output_count; i++) { outs[i]->set_dims(phi::make_ddim(vec)); outs[i]->set_dtype(x.dtype()); } } void OneHotRawInferMeta(const MetaTensor& x, const Scalar& depth, DataType dtype, bool allow_out_of_range, MetaTensor* out) { auto x_dims = x.dims(); PADDLE_ENFORCE_GE( x_dims.size(), 1, phi::errors::InvalidArgument("Rank of Input(X) should be at least 1.")); auto out_dims_vec = phi::vectorize(x_dims); out_dims_vec.push_back(depth.to()); auto out_dims = phi::make_ddim(out_dims_vec); out->set_dims(out_dims); out->share_lod(x); out->set_dtype(dtype); } void OneHotInferMeta(const MetaTensor& x, const Scalar& depth_t, MetaTensor* out) { auto x_dims = x.dims(); PADDLE_ENFORCE_GE( x_dims.size(), 1, phi::errors::InvalidArgument("Rank of Input(X) should be at least 1.")); int depth = depth_t.to(); auto out_dims_vec = phi::vectorize(x_dims); out_dims_vec.push_back(depth); auto out_dims = phi::make_ddim(out_dims_vec); out->set_dims(out_dims); out->share_lod(x); out->set_dtype(phi::DataType::FLOAT32); } void WhereIndexInferMeta(const MetaTensor& condition, MetaTensor* out) { auto rank = condition.dims().size(); PADDLE_ENFORCE_GE( rank, 1UL, phi::errors::InvalidArgument( "Input(Condition) should have number of dimension at least 1")); out->set_dims(phi::make_ddim({-1, rank})); out->set_dtype(DataType::INT64); } void ChannelShuffleInferMeta(const MetaTensor& x, int groups, const std::string& data_format, MetaTensor* out) { auto input_dims = x.dims(); PADDLE_ENFORCE_EQ(input_dims.size(), 4, phi::errors::InvalidArgument( "Input should be a 4-D tensor of format [N, C, H, W] " "or [N, H, W, C], but got %u.", input_dims.size())); PADDLE_ENFORCE_GE( groups, 1, phi::errors::InvalidArgument("groups should be larger than 0.")); PADDLE_ENFORCE_EQ(data_format == "NCHW" || data_format == "NHWC", true, phi::errors::InvalidArgument( "data_format must be one of " "NCHW and NHWC. But recevied data_format: %s", data_format)); const bool channel_last = (data_format == "NHWC"); if (!channel_last) { PADDLE_ENFORCE_EQ(input_dims[1] % groups, 0, phi::errors::InvalidArgument( "The number of groups to divide channels in [%u] " "should divide the number of channel [%u]", groups, input_dims[1])); } else { PADDLE_ENFORCE_EQ(input_dims[3] % groups, 0, phi::errors::InvalidArgument( "The number of groups to divide channels in [%u] " "should divide the number of channel [%u]", groups, input_dims[3])); } auto output_dims = input_dims; out->set_dtype(x.dtype()); out->set_dims(output_dims); } void IdentityLossInferMeta(const MetaTensor& x, int reduction, MetaTensor* out) { if (reduction == 2) { out->set_dtype(x.dtype()); out->set_dims(x.dims()); } else { out->set_dims(phi::make_ddim({1})); out->set_dtype(x.dtype()); } } } // namespace phi PD_REGISTER_INFER_META_FN(flatten, phi::FlattenInferMeta); PD_REGISTER_INFER_META_FN(split, phi::SplitInferMeta);