# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle import paddle.fluid.core as core import paddle.fluid as fluid from paddle.fluid import compiler, Program, program_guard from paddle.imperative import to_variable class TestCumsumOp(unittest.TestCase): def run_cases(self): data_np = np.arange(12).reshape(3, 4) data = to_variable(data_np) y = paddle.cumsum(data) z = np.cumsum(data_np) self.assertTrue(np.array_equal(z, y.numpy())) y = paddle.cumsum(data, axis=0) z = np.cumsum(data_np, axis=0) self.assertTrue(np.array_equal(z, y.numpy())) y = paddle.cumsum(data, axis=-1) z = np.cumsum(data_np, axis=-1) self.assertTrue(np.array_equal(z, y.numpy())) y = paddle.cumsum(data, dtype='float64') self.assertTrue(y.dtype == core.VarDesc.VarType.FP64) y = paddle.cumsum(data, dtype=np.int32) self.assertTrue(y.dtype == core.VarDesc.VarType.INT32) y = paddle.cumsum(data, axis=-2) z = np.cumsum(data_np, axis=-2) self.assertTrue(np.array_equal(z, y.numpy())) def run_static(self, use_gpu=False): with fluid.program_guard(fluid.Program()): data_np = np.random.random((100, 100)).astype(np.float32) x = paddle.nn.data('X', [100, 100]) y = paddle.cumsum(x) y2 = paddle.cumsum(x, axis=0) y3 = paddle.cumsum(x, axis=-1) y4 = paddle.cumsum(x, dtype='float64') y5 = paddle.cumsum(x, dtype=np.int32) y6 = paddle.cumsum(x, axis=-2) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) out = exe.run(feed={'X': data_np}, fetch_list=[ y.name, y2.name, y3.name, y4.name, y5.name, y6.name ]) z = np.cumsum(data_np) self.assertTrue(np.allclose(z, out[0])) z = np.cumsum(data_np, axis=0) self.assertTrue(np.allclose(z, out[1])) z = np.cumsum(data_np, axis=-1) self.assertTrue(np.allclose(z, out[2])) self.assertTrue(out[3].dtype == np.float64) self.assertTrue(out[4].dtype == np.int32) z = np.cumsum(data_np, axis=-2) self.assertTrue(np.allclose(z, out[5])) def test_cpu(self): with paddle.imperative.guard(paddle.fluid.CPUPlace()): self.run_cases() self.run_static() def test_gpu(self): if not fluid.core.is_compiled_with_cuda(): return with paddle.imperative.guard(paddle.fluid.CUDAPlace(0)): self.run_cases() self.run_static(use_gpu=True) def test_name(self): with fluid.program_guard(fluid.Program()): x = paddle.nn.data('x', [3, 4]) y = paddle.cumsum(x, name='out') self.assertTrue('out' in y.name) class TestSumOp1(OpTest): def setUp(self): self.op_type = "cumsum" self.attrs = {'axis': 2} self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.outputs = {'Out': self.inputs['X'].cumsum(axis=2)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestSumOp2(OpTest): def setUp(self): self.op_type = "cumsum" self.attrs = {'axis': -1, 'reverse': True} self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.outputs = { 'Out': np.flip( np.flip( self.inputs['X'], axis=2).cumsum(axis=2), axis=2) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestSumOp3(OpTest): def setUp(self): self.op_type = "cumsum" self.attrs = {'axis': 1} self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.outputs = {'Out': self.inputs['X'].cumsum(axis=1)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestSumOp4(OpTest): def setUp(self): self.op_type = "cumsum" self.attrs = {'axis': 0} self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.outputs = {'Out': self.inputs['X'].cumsum(axis=0)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestSumOp5(OpTest): def setUp(self): self.op_type = "cumsum" self.inputs = {'X': np.random.random((5, 20)).astype("float64")} self.outputs = {'Out': self.inputs['X'].cumsum(axis=1)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestSumOp7(OpTest): def setUp(self): self.op_type = "cumsum" self.inputs = {'X': np.random.random((100)).astype("float64")} self.outputs = {'Out': self.inputs['X'].cumsum(axis=0)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestSumOpExclusive1(OpTest): def setUp(self): self.op_type = "cumsum" self.attrs = {'axis': 2, "exclusive": True} a = np.random.random((4, 5, 65)).astype("float64") self.inputs = {'X': a} self.outputs = { 'Out': np.concatenate( (np.zeros( (4, 5, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)), axis=2) } def test_check_output(self): self.check_output() class TestSumOpExclusive2(OpTest): def setUp(self): self.op_type = "cumsum" self.attrs = {'axis': 2, "exclusive": True} a = np.random.random((1, 1, 888)).astype("float64") self.inputs = {'X': a} self.outputs = { 'Out': np.concatenate( (np.zeros( (1, 1, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)), axis=2) } def test_check_output(self): self.check_output() class TestSumOpExclusive3(OpTest): def setUp(self): self.op_type = "cumsum" self.attrs = {'axis': 2, "exclusive": True} a = np.random.random((4, 5, 888)).astype("float32") self.inputs = {'X': a} self.outputs = { 'Out': np.concatenate( (np.zeros( (4, 5, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)), axis=2) } def test_check_output(self): self.check_output() class TestSumOpExclusive4(OpTest): def setUp(self): self.op_type = "cumsum" self.attrs = {'axis': 2, "exclusive": True} a = np.random.random((1, 1, 3049)).astype("float64") self.inputs = {'X': a} self.outputs = { 'Out': np.concatenate( (np.zeros( (1, 1, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)), axis=2) } def test_check_output(self): self.check_output() class TestSumOpExclusive5(OpTest): def setUp(self): self.op_type = "cumsum" self.attrs = {'axis': 2, "exclusive": True} a = np.random.random((4, 5, 3096)).astype("float64") self.inputs = {'X': a} self.outputs = { 'Out': np.concatenate( (np.zeros( (4, 5, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)), axis=2) } def test_check_output(self): self.check_output() class TestSumOpReverseExclusive(OpTest): def setUp(self): self.op_type = "cumsum" self.attrs = {'axis': 2, 'reverse': True, "exclusive": True} a = np.random.random((4, 5, 6)).astype("float64") self.inputs = {'X': a} a = np.flip(a, axis=2) self.outputs = { 'Out': np.concatenate( (np.flip( a[:, :, :-1].cumsum(axis=2), axis=2), np.zeros( (4, 5, 1), dtype=np.float64)), axis=2) } def test_check_output(self): self.check_output() class BadInputTest(unittest.TestCase): def test_error(self): with fluid.program_guard(fluid.Program()): def test_bad_x(): data = [1, 2, 4] result = fluid.layers.cumsum(data, axis=0) self.assertRaises(TypeError, test_bad_x) if __name__ == '__main__': unittest.main()