/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include #include #include #include "paddle/fluid/distributed/ps/service/communicator/communicator_common.h" #include "paddle/fluid/distributed/ps/service/ps_service/service.h" #include "paddle/fluid/framework/archive.h" #include "paddle/fluid/framework/io/fs.h" #include "paddle/fluid/framework/io/shell.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/variable_helper.h" #include "paddle/fluid/platform/macros.h" // for DISABLE_COPY_AND_ASSIGN namespace paddle { namespace framework { class Scope; class SelectedRows; class Variable; } // namespace framework } // namespace paddle namespace paddle { namespace distributed { class PSCore; using framework::LoDTensor; using framework::Scope; using phi::SelectedRows; using framework::Variable; using RpcCtxMap = std::unordered_map; class FleetWrapper { public: virtual ~FleetWrapper() {} FleetWrapper() { scale_sparse_gradient_with_batch_size_ = true; // trainer sleep some time for pserver core dump sleep_seconds_before_fail_exit_ = 300; // pserver request server timeout ms client2client_request_timeout_ms_ = 500000; // pserver connect server timeout_ms client2client_connect_timeout_ms_ = 10000; // pserver request max retry client2client_max_retry_ = 3; } // TODO(zhaocaibei123: later) int32_t CopyTable(const uint64_t src_table_id, const uint64_t dest_table_id); int32_t CopyTableByFeasign(const uint64_t src_table_id, const uint64_t dest_table_id, const std::vector& feasign_list); typedef std::function HeterCallBackFunc; int RegisterHeterCallback(HeterCallBackFunc handler); // set client to client communication config void SetClient2ClientConfig(int request_timeout_ms, int connect_timeout_ms, int max_retry); // Pull sparse variables from server in sync mode // Param: scope, table_id, var_names, fea_keys, fea_dim, var_emb_names // Param: fea_values void PullSparseVarsSync(const Scope& scope, const uint64_t table_id, const std::vector& var_names, std::vector* fea_keys, std::vector>* fea_values, int fea_dim, const std::vector& var_emb_names); // Pull sparse variables from server in async mode // Param: scope, table_id, var_names, fea_keys, fea_dim // Param: fea_values std::future std::future PullSparseVarsAsync( const Scope& scope, const uint64_t table_id, const std::vector& var_names, std::vector* fea_keys, std::vector>* fea_values, int fea_dim); // Pull sparse variables from server in sync mode // pull immediately to tensors // is_training is true means training, false means inference, the behavior is // different on pserver void PullSparseToTensorSync(const uint64_t table_id, int fea_dim, uint64_t padding_id, platform::Place place, bool is_training, std::vector* inputs, // NOLINT std::vector* outputs); // NOLINT // pull dense variables from server in sync mod // Param: scope, table_id, var_names // Param: void void PullDenseVarsSync(const Scope& scope, const uint64_t table_id, const std::vector& var_names); // pull dense variables from server in async mod // Param: scope, table_id, var_names // Param: pull_dense_status void PullDenseVarsAsync(const Scope& scope, const uint64_t table_id, const std::vector& var_names, std::vector>* pull_dense_status, bool in_cpu); // push dense parameters(not gradients) to server in sync mode void PushDenseParamSync(const Scope& scope, const uint64_t table_id, const std::vector& var_names); void PushDenseVarsAsync(const Scope& scope, const uint64_t table_id, const std::vector& var_names, std::vector>* push_sparse_status, float scale_datanorm, int batch_size); // push dense variables to server in sync mode void PushDenseVarsSync(Scope* scope, const uint64_t table_id, const std::vector& var_names); void PushSparseVarsAsync( const Scope& scope, const uint64_t table_id, const std::string& grad, std::vector>* push_sparse_status); // This is specially designed for click/show stats in server // Param: scope, table_id, fea_keys, fea_labels, sparse_key_names, // sparse_grad_names, batch_size, use_cvm, dump_slot // Param: push_values, push_sparse_status void PushSparseVarsWithLabelAsync( const Scope& scope, const uint64_t table_id, const std::vector& fea_keys, const std::vector& fea_labels, const std::vector& sparse_key_names, const std::vector& sparse_grad_names, const int emb_dim, std::vector>* push_values, std::vector>* push_sparse_status, const int batch_size, const bool use_cvm, const bool dump_slot, std::vector* sparse_push_keys, const bool no_cvm); // Push sparse variables to server in async mode void PushSparseFromTensorWithLabelAsync( const Scope& scope, const uint64_t table_id, int fea_dim, uint64_t padding_id, bool scale_sparse, const std::string& accesor, const std::string& click_name, platform::Place place, const std::vector& input_names, std::vector* inputs, // NOLINT std::vector* outputs); // NOLINT void PushSparseFromTensorAsync(const uint64_t table_id, int fea_dim, uint64_t padding_id, platform::Place place, std::vector* inputs, const LoDTensor* shows, const LoDTensor* clicks, std::vector* outputs, bool use_cvm_op = false); // Push sparse variables to server in Async mode // Param: scope, table_id, fea_keys, sparse_grad_names // Param: push_values, push_sparse_status // init server void LoadSparseOnServer(const std::string& path, const std::string& meta, uint32_t table_id); // init server // void InitServer(const std::string& dist_desc, // const std::vector& host_sign_list, int index); void InitServer( const std::string& dist_desc, const std::vector& host_sign_list, int index, int trainers, const std::vector& server_sub_program = {}); // init trainer void InitWorker(const std::string& dist_desc, const std::vector& host_sign_list, int index); // stop server void StopServer(); // finalize worker to make worker can be stop void FinalizeWorker(); // run server with ip port uint64_t RunServer(const std::string& ip, uint32_t port); // get client info std::vector GetClientsInfo(); // set client info int SetClients(std::vector& host_sign_list); // NOLINT // create client to client connection void CreateClient2ClientConnection(); // flush all push requests void ClientFlush(); // barrier with barrier table void BarrierWithTable(uint32_t barrier_type); void PrintTableStat(const uint64_t table_id); // mode = 0, load all feature // mode = 1, load delta feature, which means load diff void LoadModel(const std::string& path, const int mode); // mode = 0, load all feature // mode = 1, load delta feature, which means load diff void LoadModelOneTable(const uint64_t table_id, const std::string& path, const int mode); // mode = 0, save all feature // mode = 1, save delta feature, which means save diff void SaveModel(const std::string& path, const int mode); // mode = 0, save all feature // mode = 1, save delta feature, which means save diff void SaveModelOneTable(const uint64_t table_id, const std::string& path, const int mode); // recv table from server and save it in LodTensor void RecvAndSaveTable(const uint64_t table_id, const std::string& path); // clear all models, release their memory void ClearModel(); // clear one table void ClearOneTable(const uint64_t table_id); // shrink sparse table void ShrinkSparseTable(int table_id, int threshold); // shrink dense table void ShrinkDenseTable(int table_id, Scope* scope, std::vector var_list, float decay, int emb_dim); typedef std::function MsgHandlerFunc; // register client to client communication int RegisterClientToClientMsgHandler(int msg_type, MsgHandlerFunc handler); // send client to client message std::future SendClientToClientMsg(int msg_type, int to_client_id, const std::string& msg); // FleetWrapper singleton static std::shared_ptr GetInstance() { if (NULL == s_instance_) { s_instance_.reset(new paddle::distributed::FleetWrapper()); } return s_instance_; } // this performs better than rand_r, especially large data std::default_random_engine& LocalRandomEngine(); // for init worker void InitGFlag(const std::string& gflags); double GetCacheThreshold(int table_id); void CacheShuffle(int table_id, const std::string& path, const int mode, const double cache_threshold); int32_t SaveCache(int table_id, const std::string& path, const int mode); static std::shared_ptr pserver_ptr_; static std::shared_ptr worker_ptr_; private: static std::shared_ptr s_instance_; paddle::distributed::PaddlePSEnvironment ps_env_; size_t GetAbsoluteSum(size_t start, size_t end, size_t level, const framework::LoD& lod); protected: static bool is_initialized_; std::map> regions_; bool scale_sparse_gradient_with_batch_size_; int32_t sleep_seconds_before_fail_exit_; int client2client_request_timeout_ms_; int client2client_connect_timeout_ms_; int client2client_max_retry_; DISABLE_COPY_AND_ASSIGN(FleetWrapper); }; } // end namespace distributed } // end namespace paddle