# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle.fluid.layers as layers from paddle.fluid.layers.device import get_places import paddle.fluid.nets as nets from paddle.fluid.framework import Program, program_guard, default_main_program from paddle.fluid.param_attr import ParamAttr import decorators from paddle.fluid.initializer import Constant class TestBook(unittest.TestCase): def test_fit_a_line(self): program = Program() with program_guard(program, startup_program=Program()): x = layers.data(name='x', shape=[13], dtype='float32') y_predict = layers.fc(input=x, size=1, act=None) y = layers.data(name='y', shape=[1], dtype='float32') cost = layers.square_error_cost(input=y_predict, label=y) avg_cost = layers.mean(cost) self.assertIsNotNone(avg_cost) print(str(program)) def test_recognize_digits_mlp(self): program = Program() with program_guard(program, startup_program=Program()): # Change g_program, so the rest layers use `g_program` images = layers.data(name='pixel', shape=[784], dtype='float32') label = layers.data(name='label', shape=[1], dtype='int32') hidden1 = layers.fc(input=images, size=128, act='relu') hidden2 = layers.fc(input=hidden1, size=64, act='relu') predict = layers.fc(input=[hidden2, hidden1], size=10, act='softmax', param_attr=["sftmax.w1", "sftmax.w2"]) cost = layers.cross_entropy(input=predict, label=label) avg_cost = layers.mean(cost) self.assertIsNotNone(avg_cost) print(str(program)) def test_simple_conv2d(self): program = Program() with program_guard(program, startup_program=Program()): images = layers.data(name='pixel', shape=[3, 48, 48], dtype='int32') layers.conv2d(input=images, num_filters=3, filter_size=[4, 4]) print(str(program)) def test_conv2d_transpose(self): program = Program() with program_guard(program): img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32') layers.conv2d_transpose(input=img, num_filters=10, output_size=28) print(str(program)) def test_recognize_digits_conv(self): program = Program() with program_guard(program, startup_program=Program()): images = layers.data( name='pixel', shape=[1, 28, 28], dtype='float32') label = layers.data(name='label', shape=[1], dtype='int32') conv_pool_1 = nets.simple_img_conv_pool( input=images, filter_size=5, num_filters=2, pool_size=2, pool_stride=2, act="relu") conv_pool_2 = nets.simple_img_conv_pool( input=conv_pool_1, filter_size=5, num_filters=4, pool_size=2, pool_stride=2, act="relu") predict = layers.fc(input=conv_pool_2, size=10, act="softmax") cost = layers.cross_entropy(input=predict, label=label) avg_cost = layers.mean(cost) print(str(program)) def test_word_embedding(self): program = Program() with program_guard(program, startup_program=Program()): dict_size = 10000 embed_size = 32 first_word = layers.data(name='firstw', shape=[1], dtype='int64') second_word = layers.data(name='secondw', shape=[1], dtype='int64') third_word = layers.data(name='thirdw', shape=[1], dtype='int64') forth_word = layers.data(name='forthw', shape=[1], dtype='int64') next_word = layers.data(name='nextw', shape=[1], dtype='int64') embed_first = layers.embedding( input=first_word, size=[dict_size, embed_size], dtype='float32', param_attr='shared_w') embed_second = layers.embedding( input=second_word, size=[dict_size, embed_size], dtype='float32', param_attr='shared_w') embed_third = layers.embedding( input=third_word, size=[dict_size, embed_size], dtype='float32', param_attr='shared_w') embed_forth = layers.embedding( input=forth_word, size=[dict_size, embed_size], dtype='float32', param_attr='shared_w') concat_embed = layers.concat( input=[embed_first, embed_second, embed_third, embed_forth], axis=1) hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid') predict_word = layers.fc(input=hidden1, size=dict_size, act='softmax') cost = layers.cross_entropy(input=predict_word, label=next_word) avg_cost = layers.mean(cost) self.assertIsNotNone(avg_cost) print(str(program)) def test_linear_chain_crf(self): program = Program() with program_guard(program, startup_program=Program()): label_dict_len = 10 images = layers.data(name='pixel', shape=[784], dtype='float32') label = layers.data(name='label', shape=[1], dtype='int32') hidden = layers.fc(input=images, size=128) crf = layers.linear_chain_crf( input=hidden, label=label, param_attr=ParamAttr(name="crfw")) crf_decode = layers.crf_decoding( input=hidden, param_attr=ParamAttr(name="crfw")) layers.chunk_eval( input=crf_decode, label=label, chunk_scheme="IOB", num_chunk_types=(label_dict_len - 1) // 2) self.assertFalse(crf is None) self.assertFalse(crf_decode is None) print(str(program)) def test_sigmoid_cross_entropy(self): program = Program() with program_guard(program): dat = layers.data(name='data', shape=[10], dtype='float32') lbl = layers.data(name='label', shape=[10], dtype='float32') self.assertIsNotNone( layers.sigmoid_cross_entropy_with_logits( x=dat, label=lbl)) print(str(program)) def test_hsigmoid(self): program = Program() with program_guard(program): x = layers.data(name='x', shape=[2], dtype='float32') y = layers.data(name='y', shape=[2], dtype='int64') self.assertIsNotNone( layers.hsigmoid( input=x, label=y, num_classes=2)) print(str(program)) def test_sequence_expand(self): program = Program() with program_guard(program): x = layers.data(name='x', shape=[10], dtype='float32') y = layers.data( name='y', shape=[10, 20], dtype='float32', lod_level=2) self.assertIsNotNone(layers.sequence_expand(x=x, y=y, ref_level=1)) print(str(program)) def test_lstm_unit(self): program = Program() with program_guard(program): x_t_data = layers.data( name='x_t_data', shape=[10, 10], dtype='float32') x_t = layers.fc(input=x_t_data, size=10) prev_hidden_data = layers.data( name='prev_hidden_data', shape=[10, 30], dtype='float32') prev_hidden = layers.fc(input=prev_hidden_data, size=30) prev_cell_data = layers.data( name='prev_cell', shape=[10, 30], dtype='float32') prev_cell = layers.fc(input=prev_cell_data, size=30) self.assertIsNotNone( layers.lstm_unit( x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell)) print(str(program)) def test_dynamic_lstmp(self): program = Program() with program_guard(program): hidden_dim, proj_dim = 16, 8 seq_data = layers.data( name='seq_data', shape=[10, 10], dtype='float32', lod_level=1) fc_out = layers.fc(input=seq_data, size=4 * hidden_dim) self.assertIsNotNone( layers.dynamic_lstmp( input=fc_out, size=4 * hidden_dim, proj_size=proj_dim)) print(str(program)) def test_sequence_softmax(self): program = Program() with program_guard(program): seq_data = layers.data( name='seq_data', shape=[10, 10], dtype='float32', lod_level=1) seq = layers.fc(input=seq_data, size=20) self.assertIsNotNone(layers.sequence_softmax(seq)) print(str(program)) def test_softmax(self): program = Program() with program_guard(program): data = layers.data(name='data', shape=[10], dtype='float32') hid = layers.fc(input=data, size=20) self.assertIsNotNone(layers.softmax(hid)) print(str(program)) def test_sequence_unsqueeze(self): program = Program() with program_guard(program): x = layers.data(name='x', shape=[8, 2], dtype='float32') out = layers.unsqueeze(input=x, axes=[1]) self.assertIsNotNone(out) print(str(program)) def test_squeeze(self): program = Program() with program_guard(program): x = layers.data(name='x', shape=[1, 1, 4], dtype='float32') out = layers.squeeze(input=x, axes=[2]) self.assertIsNotNone(out) print(str(program)) def test_lrn(self): program = Program() with program_guard(program): data = layers.data(name='data', shape=[6, 2, 2], dtype='float32') self.assertIsNotNone(layers.lrn(data)) print(str(program)) def test_get_places(self): program = Program() with program_guard(program): x = get_places(device_count=4) self.assertIsNotNone(x) print(str(program)) def test_sequence_reshape(self): program = Program() with program_guard(program): x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1) out = layers.sequence_reshape(input=x, new_dim=16) self.assertIsNotNone(out) print(str(program)) def test_im2sequence(self): program = Program() with program_guard(program): x = layers.data(name='x', shape=[3, 128, 128], dtype='float32') y = layers.data(name='y', shape=[], dtype='float32') output = layers.im2sequence( input=x, input_image_size=y, stride=[1, 1], filter_size=[2, 2], out_stride=[1, 1]) self.assertIsNotNone(output) print(str(program)) @decorators.prog_scope() def test_nce(self): window_size = 5 words = [] for i in range(window_size): words.append( layers.data( name='word_{0}'.format(i), shape=[1], dtype='int64')) dict_size = 10000 label_word = int(window_size // 2) + 1 embs = [] for i in range(window_size): if i == label_word: continue emb = layers.embedding( input=words[i], size=[dict_size, 32], param_attr='emb.w', is_sparse=True) embs.append(emb) embs = layers.concat(input=embs, axis=1) loss = layers.nce(input=embs, label=words[label_word], num_total_classes=dict_size, param_attr='nce.w', bias_attr='nce.b') avg_loss = layers.mean(loss) self.assertIsNotNone(avg_loss) print(str(default_main_program())) def test_row_conv(self): program = Program() with program_guard(program): x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1) out = layers.row_conv(input=x, future_context_size=2) self.assertIsNotNone(out) print(str(program)) def test_multiplex(self): program = Program() with program_guard(program): x1 = layers.data(name='x1', shape=[4], dtype='float32') x2 = layers.data(name='x2', shape=[4], dtype='float32') index = layers.data(name='index', shape=[1], dtype='int32') out = layers.multiplex(inputs=[x1, x2], index=index) self.assertIsNotNone(out) print(str(program)) def test_softmax_with_cross_entropy(self): program = Program() with program_guard(program): x = layers.data(name='x', shape=[16], dtype='float32') y = layers.data(name='label', shape=[1], dtype='int64') loss = layers.softmax_with_cross_entropy(x, y) self.assertIsNotNone(loss) print(str(program)) def test_smooth_l1(self): program = Program() with program_guard(program): x = layers.data(name='x', shape=[4], dtype='float32') y = layers.data(name='label', shape=[4], dtype='float32') loss = layers.smooth_l1(x, y) self.assertIsNotNone(loss) print(str(program)) def test_scatter(self): program = Program() with program_guard(program): x = layers.data( name='x', shape=[3, 3], append_batch_size=False, dtype='float32') idx = layers.data( name='idx', shape=[2], append_batch_size=False, dtype='int32') updates = layers.data( name='updates', shape=[2, 3], append_batch_size=False, dtype='float32') out = layers.scatter(input=x, index=idx, updates=updates) self.assertIsNotNone(out) print(str(program)) def test_sequence_scatter(self): program = Program() with program_guard(program): x = layers.data( name='x', shape=[3, 6], append_batch_size=False, dtype='float32') idx = layers.data( name='idx', shape=[12, 1], append_batch_size=False, dtype='int32', lod_level=1) updates = layers.data( name='updates', shape=[12, 1], append_batch_size=False, dtype='float32', lod_level=1) out = layers.sequence_scatter(input=x, index=idx, updates=updates) self.assertIsNotNone(out) print(str(program)) def test_lod_reset(self): program = Program() with program_guard(program): x = layers.data(name='x', shape=[10], dtype='float32') y = layers.data( name='y', shape=[10, 20], dtype='float32', lod_level=2) print(layers.lod_reset(x=x, y=y)) print(str(program)) def test_label_smooth(self): program = Program() with program_guard(program): label = layers.data(name="label", shape=[1], dtype="float32") one_hot_label = layers.one_hot(input=label, depth=10) smooth_label = layers.label_smooth( label=one_hot_label, epsilon=0.1, dtype="float32") self.assertIsNotNone(smooth_label) print(str(program)) def test_topk(self): program = Program() with program_guard(program): data = layers.data(name="label", shape=[200], dtype="float32") values, indices = layers.topk(data, k=5) self.assertIsNotNone(values) self.assertIsNotNone(indices) print(str(program)) def test_roi_pool(self): program = Program() with program_guard(program): x = layers.data(name="x", shape=[256, 30, 30], dtype="float32") rois = layers.data( name="rois", shape=[4], dtype="float32", lod_level=1) output = layers.roi_pool(x, rois, 7, 7, 0.6) self.assertIsNotNone(output) print(str(program)) def test_resize_bilinear(self): program = Program() with program_guard(program): x = layers.data(name='x', shape=[3, 9, 6], dtype="float32") output = layers.resize_bilinear(x, out_shape=[12, 12]) self.assertIsNotNone(output) output = layers.resize_bilinear(x, scale=3) self.assertIsNotNone(output) print(str(program)) def test_polygon_box_transform(self): program = Program() with program_guard(program): x = layers.data(name='x', shape=[8, 4, 4], dtype="float32") output = layers.polygon_box_transform(input=x) self.assertIsNotNone(output) print(str(program)) def test_l2_normalize(self): program = Program() with program_guard(program): x = layers.data(name='x', shape=[8, 7, 10], dtype="float32") output = layers.l2_normalize(x, axis=1) def test_maxout(self): program = Program() with program_guard(program): data = layers.data(name='x', shape=[8, 6, 6], dtype="float32") output = layers.maxout(x=data, groups=2) self.assertIsNotNone(output) print(str(program)) def test_crop(self): program = Program() with program_guard(program): x = layers.data(name='x', shape=[3, 5], dtype="float32") y = layers.data(name='y', shape=[2, 3], dtype="float32") output = layers.crop(x, shape=y) self.assertIsNotNone(output) print(str(program)) def test_mean_iou(self): program = Program() with program_guard(program): x = layers.data(name='x', shape=[16], dtype='float32') y = layers.data(name='label', shape=[1], dtype='int64') iou = layers.mean_iou(x, y, 2) self.assertIsNotNone(iou) print(str(program)) def test_argsort(self): program = Program() with program_guard(program): data = layers.data(name='x', shape=[2, 3, 3], dtype="float32") out, ids = layers.argsort(input=data, axis=1) self.assertIsNotNone(out) self.assertIsNotNone(ids) print(str(program)) def test_rank_loss(self): program = Program() with program_guard(program): label = layers.data( name='label', append_batch_size=False, shape=[16, 1], dtype="float32") left = layers.data( name='left', append_batch_size=False, shape=[16, 1], dtype="float32") right = layers.data( name='right', append_batch_size=False, shape=[16, 1], dtype="float32") out = layers.rank_loss(label, left, right, name="rank_loss") self.assertIsNotNone(out) print(str(program)) def test_flatten(self): program = Program() with program_guard(program): x = layers.data( name='x', append_batch_size=False, shape=[4, 4, 3], dtype="float32") out = layers.flatten(x, axis=1, name="flatten") self.assertIsNotNone(out) def test_shape(self): program = Program() with program_guard(program): input = layers.data( name="input", shape=[3, 100, 100], dtype="float32") out = layers.shape(input, name="shape") self.assertIsNotNone(out) print(str(program)) def test_pad2d(self): program = Program() with program_guard(program): input = layers.data( name="input", shape=[3, 100, 100], dtype="float32") out = layers.pad2d( input, paddings=[1, 2, 3, 4], mode='reflect', data_format='NCHW', name="shape") self.assertIsNotNone(out) print(str(program)) def test_prelu(self): program = Program() with program_guard(program): input = layers.data( name="input", shape=[5, 200, 100, 100], dtype="float32") mode = 'channel' out = layers.prelu( input, mode, param_attr=ParamAttr(initializer=Constant(1.0)), name='prelu') self.assertIsNotNone(out) print(str(program)) def test_roi_perspective_transform(self): program = Program() with program_guard(program): x = layers.data(name="x", shape=[256, 30, 30], dtype="float32") rois = layers.data( name="rois", shape=[8], dtype="float32", lod_level=1) output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6) self.assertIsNotNone(output) print(str(program)) def test_sequence_enumerate(self): program = Program() with program_guard(program): x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1) out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0) print(str(program)) def test_cross_entropy(self): program = Program() with program_guard(program): x = layers.data(name="x", shape=[30, 10], dtype="float32") label = layers.data(name="label", shape=[30, 1], dtype="int32") mode = 'channel' out = layers.cross_entropy(x, label, False, 4) self.assertIsNotNone(out) def test_expand(self): program = Program() with program_guard(program): x = layers.data(name="input", shape=[10], dtype='int32') out = layers.expand(x, [1, 2]) print(str(program)) if __name__ == '__main__': unittest.main()