# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers import paddle.fluid.core as core from op_test import OpTest, skip_check_grad_ci from gradient_checker import grad_check from decorator_helper import prog_scope class TestSvdOp(OpTest): def setUp(self): paddle.enable_static() self.python_api = paddle.linalg.svd self.generate_input() self.generate_output() self.op_type = "svd" assert (hasattr(self, "_output_data")) self.inputs = {"X": self._input_data} self.attrs = {'full_matrices': self.get_full_matrices_option()} self.outputs = { "U": self._output_data[0], "S": self._output_data[1], "VH": self._output_data[2] } def generate_input(self): """ return a input_data and input_shape """ self._input_shape = (100, 1) self._input_data = np.random.random(self._input_shape).astype("float64") def get_full_matrices_option(self): return False def generate_output(self): assert (hasattr(self, "_input_data")) self._output_data = np.linalg.svd(self._input_data) def test_check_output(self): self.check_output(no_check_set=['U', 'VH'], check_eager=True) def test_svd_forward(self): """ u matmul diag(s) matmul vt must become X """ single_input = self._input_data.reshape( [-1, self._input_shape[-2], self._input_shape[-1]])[0] paddle.disable_static() dy_x = paddle.to_tensor(single_input) dy_u, dy_s, dy_vt = paddle.linalg.svd(dy_x) dy_out_x = dy_u.matmul(paddle.diag(dy_s)).matmul(dy_vt) if (paddle.abs(dy_out_x - dy_x) < 1e-7).all(): ... else: print("EXPECTED:\n", dy_x) print("GOT :\n", dy_out_x) raise RuntimeError("Check SVD Failed") paddle.enable_static() def check_S_grad(self): self.check_grad(['X'], ['S'], numeric_grad_delta=0.001, check_eager=True) def check_U_grad(self): self.check_grad(['X'], ['U'], numeric_grad_delta=0.001, check_eager=True) def check_V_grad(self): self.check_grad(['X'], ['VH'], numeric_grad_delta=0.001, check_eager=True) def test_check_grad(self): """ remember the input matrix must be the full rank matrix, otherwise the gradient will stochatic because the u / v 's (n-k) freedom vectors """ self.check_S_grad() self.check_U_grad() self.check_V_grad() class TestSvdCheckGrad2(TestSvdOp): # NOTE(xiongkun03): because we want to construct some full rank matrics, # so we can't specifize matrices which numel() > 100 no_need_check_grad = True def generate_input(self): """ return a deterministic matrix, the range matrix; vander matrix must be a full rank matrix. """ self._input_shape = (5, 5) self._input_data = np.vander([2, 3, 4, 5, 6]).astype("float64").reshape( self._input_shape) class TestSvdNormalMatrixSmall(TestSvdCheckGrad2): def generate_input(self): """ small matrix SVD. """ self._input_shape = (1, 1) self._input_data = np.random.random(self._input_shape).astype("float64") class TestSvdNormalMatrix6x3(TestSvdCheckGrad2): def generate_input(self): """ return a deterministic matrix, the range matrix; vander matrix must be a full rank matrix. """ self._input_shape = (6, 3) self._input_data = np.array([[1.0, 2.0, 3.0], [0.0, 1.0, 5.0], [0.0, 0.0, 6.0], [2.0, 4.0, 9.0], [3.0, 6.0, 8.0], [3.0, 1.0, 0.0]]).astype("float64") class TestSvdNormalMatrix3x6(TestSvdCheckGrad2): def generate_input(self): """ return a deterministic matrix, the range matrix; vander matrix must be a full rank matrix. """ self._input_shape = (3, 6) self._input_data = np.array([[1.0, 2.0, 3.0], [0.0, 1.0, 5.0], [0.0, 0.0, 6.0], [2.0, 4.0, 9.0], [3.0, 6.0, 8.0], [3.0, 1.0, 0.0]]).astype("float64") self._input_data = self._input_data.transpose((-1, -2)) class TestSvdNormalMatrix6x3Batched(TestSvdOp): def generate_input(self): self._input_shape = (10, 6, 3) self._input_data = np.array([[1.0, 2.0, 3.0], [0.0, 1.0, 5.0], [0.0, 0.0, 6.0], [2.0, 4.0, 9.0], [3.0, 6.0, 8.0], [3.0, 1.0, 0.0]]).astype("float64") self._input_data = np.stack([self._input_data] * 10, axis=0) def test_svd_forward(self): """ test_svd_forward not support batched input, so disable this test. """ pass class TestSvdNormalMatrix3x6Batched(TestSvdOp): def generate_input(self): """ return a deterministic matrix, the range matrix; vander matrix must be a full rank matrix. """ self._input_shape = (10, 3, 6) self._input_data = np.array([[1.0, 2.0, 3.0], [0.0, 1.0, 5.0], [0.0, 0.0, 6.0], [2.0, 4.0, 9.0], [3.0, 6.0, 8.0], [3.0, 1.0, 0.0]]).astype("float64") self._input_data = self._input_data.transpose((-1, -2)) self._input_data = np.stack([self._input_data] * 10, axis=0) def test_svd_forward(self): """ test_svd_forward not support batched input, so disable this test. """ pass class TestSvdNormalMatrix3x3x3x6Batched(TestSvdOp): def generate_input(self): """ return a deterministic matrix, the range matrix; vander matrix must be a full rank matrix. """ self._input_shape = (3, 3, 3, 6) self._input_data = np.array([[1.0, 2.0, 3.0], [0.0, 1.0, 5.0], [0.0, 0.0, 6.0], [2.0, 4.0, 9.0], [3.0, 6.0, 8.0], [3.0, 1.0, 0.0]]).astype("float64") self._input_data = self._input_data.transpose((-1, -2)) self._input_data = np.stack( [self._input_data, self._input_data, self._input_data], axis=0) self._input_data = np.stack( [self._input_data, self._input_data, self._input_data], axis=0) def test_svd_forward(self): """ test_svd_forward not support batched input, so disable this test. """ pass @skip_check_grad_ci(reason="'check_grad' on large inputs is too slow, " + "however it is desirable to cover the forward pass") class TestSvdNormalMatrixBig(TestSvdOp): def generate_input(self): """ big matrix SVD. """ self._input_shape = (2, 200, 300) self._input_data = np.random.random(self._input_shape).astype("float64") def test_svd_forward(self): """ test_svd_forward not support batched input, so disable this test. """ pass def test_check_grad(self): pass class TestSvdNormalMatrixBig2(TestSvdOp): def generate_input(self): """ big matrix SVD. """ self._input_shape = (1, 100) self._input_data = np.random.random(self._input_shape).astype("float64") class TestSvdNormalMatrixFullMatrices(unittest.TestCase): def setUp(self): paddle.disable_static() def tearDown(self): paddle.enable_static() def test_full_matrices(self): mat_shape = (2, 3) mat = np.random.random(mat_shape).astype("float64") x = paddle.to_tensor(mat) u, s, vh = paddle.linalg.svd(x, full_matrices=True) assert (u.shape == [2, 2]) assert (vh.shape == [3, 3]) x_recover = u.matmul(paddle.diag(s)).matmul(vh[0:2]) if ((paddle.abs(x_recover - x) > 1e-4).any()): raise RuntimeError("mat can't be recovered\n") class TestSvdFullMatriceGrad(TestSvdNormalMatrix6x3): def get_full_matrices_option(self): return True def test_svd_forward(self): """ test_svd_forward not support full matrices, so disable this test. """ pass def test_check_grad(self): """ remember the input matrix must be the full rank matrix, otherwise the gradient will stochatic because the u / v 's (n-k) freedom vectors """ self.check_S_grad() #self.check_U_grad() // don't check U grad, because U have freedom vector self.check_V_grad() class TestSvdAPI(unittest.TestCase): def test_dygraph(self): paddle.disable_static() a = np.random.rand(5, 5) x = paddle.to_tensor(a) u, s, vh = paddle.linalg.svd(x) gt_u, gt_s, gt_vh = np.linalg.svd(a, full_matrices=False) np.testing.assert_allclose(s, gt_s, rtol=1e-05) def test_static(self): paddle.enable_static() places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for place in places: with fluid.program_guard(fluid.Program(), fluid.Program()): a = np.random.rand(5, 5) x = paddle.fluid.data(name="input", shape=[5, 5], dtype='float64') u, s, vh = paddle.linalg.svd(x) exe = fluid.Executor(place) gt_u, gt_s, gt_vh = np.linalg.svd(a, full_matrices=False) fetches = exe.run(fluid.default_main_program(), feed={"input": a}, fetch_list=[s]) np.testing.assert_allclose(fetches[0], gt_s, rtol=1e-05) if __name__ == "__main__": paddle.enable_static() unittest.main()