/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/framework/fleet/heter_ps/heter_ps.h" #ifdef PADDLE_WITH_HETERPS namespace paddle { namespace framework { HeterPsBase* HeterPsBase::get_instance( size_t capacity, std::shared_ptr resource, std::unordered_map fleet_config, std::string accessor_type, int optimizer_type) { if (accessor_type == "CtrDymfAccessor") { auto* accessor_wrapper_ptr = GlobalAccessorFactory::GetInstance().GetAccessorWrapper(); CommonFeatureValueAccessor* gpu_accessor = ((AccessorWrapper*)accessor_wrapper_ptr) ->AccessorPtr(); if (optimizer_type == 1) { return new HeterPs( capacity, resource, *gpu_accessor); } else if (optimizer_type == 3) { return new HeterPs( capacity, resource, *gpu_accessor); } else if (optimizer_type == 4) { return new HeterPs( capacity, resource, *gpu_accessor); } } else { VLOG(0) << " HeterPsBase get_instance Warning: now only support " "CtrDymfAccessor, but get " << accessor_type; } } template class GPUOptimizer> HeterPs::HeterPs( size_t capacity, std::shared_ptr resource, GPUAccessor& gpu_accessor) { // NOLINT comm_ = std::make_shared>( capacity, resource, gpu_accessor); opt_ = GPUOptimizer(gpu_accessor); } template class GPUOptimizer> HeterPs::~HeterPs() {} template class GPUOptimizer> void HeterPs::pull_sparse(int num, FeatureKey* d_keys, float* d_vals, size_t len) { comm_->pull_sparse(num, d_keys, d_vals, len); } template class GPUOptimizer> void HeterPs::build_ps(int num, FeatureKey* h_keys, char* pool, size_t len, size_t feature_value_size, size_t chunk_size, int stream_num) { comm_->build_ps( num, h_keys, pool, len, feature_value_size, chunk_size, stream_num); } template class GPUOptimizer> int HeterPs::get_index_by_devid(int devid) { return comm_->get_index_by_devid(devid); } template class GPUOptimizer> void HeterPs::set_sparse_sgd( const OptimizerConfig& optimizer_config) { comm_->set_sparse_sgd(optimizer_config); } template class GPUOptimizer> void HeterPs::set_embedx_sgd( const OptimizerConfig& optimizer_config) { comm_->set_embedx_sgd(optimizer_config); } template class GPUOptimizer> void HeterPs::end_pass() { comm_->end_pass(); } template class GPUOptimizer> void HeterPs::show_one_table(int gpu_num) { comm_->show_one_table(gpu_num); } template class GPUOptimizer> void HeterPs::push_sparse(int num, FeatureKey* d_keys, float* d_grads, size_t len) { comm_->push_sparse(num, d_keys, d_grads, len, opt_); } template class GPUOptimizer> void HeterPs::set_nccl_comm_and_size( const std::vector& inner_comms, const std::vector& inter_comms, int comm_size, int rank_id) { comm_->set_nccl_comm_and_size(inner_comms, inter_comms, comm_size, rank_id); } template class GPUOptimizer> void HeterPs::set_multi_mf_dim(int multi_mf_dim, int max_mf_dim) { comm_->set_multi_mf_dim(multi_mf_dim, max_mf_dim); } template class GPUOptimizer> void HeterPs::show_table_collisions() { comm_->show_table_collisions(); } template class GPUOptimizer> int HeterPs::dedup_keys_and_fillidx( const int gpu_id, const int total_fea_num, const FeatureKey* d_keys, // input FeatureKey* d_merged_keys, // output FeatureKey* d_sorted_keys, uint32_t* d_restore_idx, uint32_t* d_sorted_idx, uint32_t* d_offset, uint32_t* d_merged_cnts, bool filter_zero) { return comm_->dedup_keys_and_fillidx(gpu_id, total_fea_num, d_keys, // input d_merged_keys, // output d_sorted_keys, d_restore_idx, d_sorted_idx, d_offset, d_merged_cnts, filter_zero); } } // end namespace framework } // end namespace paddle #endif