# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.fluid as fluid from paddle.device.cuda.graphs import CUDAGraph import unittest import numpy as np class TestCUDAGraph(unittest.TestCase): def setUp(self): fluid.set_flags({'FLAGS_allocator_strategy': 'auto_growth'}) def random_tensor(self, shape): return paddle.to_tensor( np.random.randint( low=0, high=10, size=shape).astype("float32")) def test_cuda_graph(self): if not paddle.is_compiled_with_cuda() or paddle.is_compiled_with_rocm(): return shape = [2, 3] x = self.random_tensor(shape) z = self.random_tensor(shape) g = CUDAGraph() g.capture_begin() y = x + 10 z.add_(x) g.capture_end() for _ in range(10): z_np_init = z.numpy() x_new = self.random_tensor(shape) x.copy_(x_new, False) g.replay() x_np = x_new.numpy() y_np = y.numpy() z_np = z.numpy() self.assertTrue((y_np - x_np == 10).all()) self.assertTrue((z_np - z_np_init == x_np).all()) g.reset() if __name__ == "__main__": unittest.main()