/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/framework/executor.h" #include #include "gtest/gtest.h" #include "paddle/framework/attribute.h" #include "paddle/framework/backward.h" #include "paddle/framework/block_desc.h" #include "paddle/framework/grad_op_builder.h" #include "paddle/framework/op_desc.h" #include "paddle/framework/op_registry.h" #include "paddle/framework/operator.h" USE_OP(elementwise_add); USE_OP(gaussian_random); USE_OP(feed); USE_OP(fetch); USE_OP(mul); USE_OP(squared_l2_distance); using std::string; using namespace paddle::platform; using namespace paddle::framework; typedef paddle::framework::BlockDesc proto_block; typedef paddle::framework::OpDesc proto_op; struct SetAttrDescVisitor : public boost::static_visitor { explicit SetAttrDescVisitor(OpDesc::Attr* attr) : attr_(attr) {} mutable OpDesc::Attr* attr_; void operator()(int v) const { attr_->set_i(v); } void operator()(float v) const { attr_->set_f(v); } void operator()(const std::string& v) const { attr_->set_s(v); } void operator()(bool b) const { attr_->set_b(b); } void operator()(const std::vector& v) const { VectorToRepeated(v, attr_->mutable_ints()); } void operator()(const std::vector& v) const { VectorToRepeated(v, attr_->mutable_floats()); } void operator()(const std::vector& v) const { VectorToRepeated(v, attr_->mutable_strings()); } void operator()(const std::vector& v) const { VectorToRepeated(v, attr_->mutable_bools()); } void operator()(BlockDesc* desc) const { attr_->set_block_idx(desc->idx()); } void operator()(boost::blank) const { PADDLE_THROW("Unexpected branch"); } }; void AddOp(const std::string& type, const VariableNameMap& inputs, const VariableNameMap& outputs, AttributeMap attrs, proto_block* block) { // insert output for (auto kv : outputs) { for (auto v : kv.second) { auto var = block->add_vars(); var->set_name(v); auto var_lt = var->mutable_lod_tensor(); var_lt->set_data_type(paddle::framework::DataType::FP32); } } // insert op auto op = block->add_ops(); op->set_type(type); for (auto kv : inputs) { auto X = op->add_inputs(); X->set_parameter(kv.first); for (auto argu : kv.second) { X->add_arguments(argu); } } for (auto kv : outputs) { auto X = op->add_outputs(); X->set_parameter(kv.first); for (auto argu : kv.second) { X->add_arguments(argu); } } for (auto& attr : attrs) { auto* attr_desc = op->add_attrs(); attr_desc->set_name(attr.first); attr_desc->set_type( static_cast(attr.second.which() - 1)); SetAttrDescVisitor visitor(attr_desc); boost::apply_visitor(visitor, attr.second); } } std::once_flag set_variable_flag; // Tensors in feed value variable will only be in CPUPlace // So we can memcpy the data from vector to feed_value template void set_feed_variable(const std::vector>& inputs) { typedef std::vector FeedInputs; Variable* g_feed_value = GetGlobalScope()->FindVar("feed_value"); FeedInputs& feed_inputs = *(g_feed_value->GetMutable()); auto size = inputs.size(); feed_inputs.resize(size); for (size_t i = 0; i < size; i++) { T* dst = feed_inputs[i].mutable_data( make_ddim({static_cast(inputs[i].size())}), CPUPlace()); memcpy(dst, inputs[i].data(), inputs[i].size() * sizeof(T)); } } // Tensors in fetch value variable will only be in CPUPlace // So we can memcpy the data from fetch_value to vector template std::vector> get_fetch_variable() { typedef std::vector FetchOutputs; Variable* g_fetch_value = GetGlobalScope()->FindVar("fetch_value"); FetchOutputs& fetch_outputs = *(g_fetch_value->GetMutable()); auto size = fetch_outputs.size(); std::vector> result; result.reserve(size); for (size_t i = 0; i < size; i++) { std::vector tmp; tmp.resize(fetch_outputs[i].numel()); memcpy(tmp.data(), fetch_outputs[i].data(), fetch_outputs[i].numel() * sizeof(T)); result.push_back(tmp); } return result; } class ExecutorTesterRandom : public ::testing::Test { public: virtual void SetUp() override { int input_dim = 5, batch_size = 2, embed_dim = 5; // init pdesc auto init_root_block = init_pdesc_.add_blocks(); init_root_block->set_idx(0); init_root_block->set_parent_idx(-1); AddOp("gaussian_random", {}, {{"Out", {"w1"}}}, {{"dims", std::vector{input_dim, embed_dim}}}, init_root_block); AddOp("gaussian_random", {}, {{"Out", {"w2"}}}, {{"dims", std::vector{embed_dim, input_dim}}}, init_root_block); AddOp("fetch", {{"Input", {"w1"}}}, {}, {{"dims", std::vector{input_dim, embed_dim}}, {"col", 0}}, init_root_block); AddOp("fetch", {{"Input", {"w2"}}}, {}, {{"dims", std::vector{embed_dim, input_dim}}, {"col", 1}}, init_root_block); // run pdesc auto root_block = pdesc_.add_blocks(); root_block->set_idx(0); root_block->set_parent_idx(-1); AddOp("gaussian_random", {}, {{"Out", {"a"}}}, {{"dims", std::vector{batch_size, input_dim}}}, root_block); AddOp("mul", {{"X", {"a"}}, {"Y", {"w1"}}}, {{"Out", {"b"}}}, {}, root_block); AddOp("mul", {{"X", {"b"}}, {"Y", {"w2"}}}, {{"Out", {"a_out"}}}, {}, root_block); AddOp("squared_l2_distance", {{"X", {"a"}}, {"Y", {"a_out"}}}, {{"Out", {"l2_distance"}}, {"sub_result", {"l2_distance_sub"}}}, {}, root_block); AppendBackward(pdesc_, {}); // AddOp("fetch", {{"Input", {"sub_result"}}}, {}, // {{"dims", std::vector{input_dim, batch_size}}, {"col", 0}}, // root_block); AddOp("fetch", {{"Input", {"l2_distance"}}}, {}, {{"dims", std::vector{batch_size}}, {"col", 1}}, root_block); } protected: ProgramDesc pdesc_; ProgramDesc init_pdesc_; }; class ExecutorTesterFeedAndFetch : public ::testing::Test { public: virtual void SetUp() override { auto root_block = pdesc_.add_blocks(); root_block->set_idx(0); root_block->set_parent_idx(-1); std::vector dim{6}; AddOp("feed", {}, {{"Out", {"a"}}}, {{"dims", dim}, {"col", 0}}, root_block); AddOp("feed", {}, {{"Out", {"b"}}}, {{"dims", dim}, {"col", 1}}, root_block); AddOp("fetch", {{"Input", {"a"}}}, {}, {{"dims", dim}, {"col", 0}}, root_block); AddOp("fetch", {{"Input", {"b"}}}, {}, {{"dims", dim}, {"col", 1}}, root_block); std::vector vec1 = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0}; std::vector vec2 = {4.0, 5.0, 6.0, 7.0, 8.0, 9.0}; inputs_.push_back(vec1); inputs_.push_back(vec2); } protected: ProgramDesc pdesc_; std::vector> inputs_; }; #ifndef PADDLE_WITH_CUDA TEST_F(ExecutorTesterRandom, CPU) { std::vector places; CPUPlace cpu_place; places.push_back(cpu_place); // We have a global Scope and BuddyAllocator, and we must ensure // global BuddyAllocator is initialized before global Scope. Thus, // global Scope will deconstruct before BuddyAllocator. Otherwise, // "pointer being freed was not allocated" error will appear. paddle::memory::Used(cpu_place); Executor* executor = new Executor(places); executor->Run(init_pdesc_, GetGlobalScope()); executor->Run(pdesc_, GetGlobalScope()); std::vector> result = get_fetch_variable(); for (auto& vec : result) { for (auto& num : vec) { std::cout << num << " "; } std::cout << std::endl; } delete executor; } TEST_F(ExecutorTesterFeedAndFetch, CPU) { std::vector places; CPUPlace cpu_place; places.push_back(cpu_place); // We have a global Scope and BuddyAllocator, and we must ensure // global BuddyAllocator is initialized before global Scope. Thus, // global Scope will deconstruct before BuddyAllocator. Otherwise, // "pointer being freed was not allocated" error will appear. paddle::memory::Used(cpu_place); Executor* executor = new Executor(places); // 3 mini-batch for (int i = 0; i < 3; i++) { set_feed_variable(inputs_); executor->Run(pdesc_, GetGlobalScope()); std::vector> result = get_fetch_variable(); PADDLE_ENFORCE_EQ(result.size(), inputs_.size()); for (size_t i = 0; i < result.size(); ++i) { PADDLE_ENFORCE_EQ(result[i].size(), inputs_[i].size()); for (size_t j = 0; j < result[i].size(); ++j) { PADDLE_ENFORCE_EQ(result[i][j], inputs_[i][j]); } } } delete executor; } #else TEST_F(ExecutorTesterRandom, GPU) { std::vector places; GPUPlace gpu_place(0); places.push_back(gpu_place); // We have a global Scope and BuddyAllocator, and we must ensure // global BuddyAllocator is initialized before global Scope. Thus, // global Scope will deconstruct before BuddyAllocator. Otherwise, // "pointer being freed was not allocated" error will appear. // If paddle is compiled with GPU, both CPU and GPU BuddyAllocator // need to be used at first. paddle::memory::Used(CPUPlace()); paddle::memory::Used(gpu_place); Executor* executor = new Executor(places); LOG(INFO) << "Run Init"; executor->Run(init_pdesc_, GetGlobalScope()); LOG(INFO) << "Run"; executor->Run(pdesc_, GetGlobalScope()); std::vector> result = get_fetch_variable(); for (auto& vec : result) { for (auto& num : vec) { std::cout << num << " "; } std::cout << std::endl; } delete executor; } TEST_F(ExecutorTesterFeedAndFetch, GPU) { std::vector places; GPUPlace gpu_place(0); places.push_back(gpu_place); // We have a global Scope and BuddyAllocator, and we must ensure // global BuddyAllocator is initialized before global Scope. Thus, // global Scope will deconstruct before BuddyAllocator. Otherwise, // "pointer being freed was not allocated" error will appear. // If paddle is compiled with GPU, both CPU and GPU BuddyAllocator // need to be used at first. paddle::memory::Used(CPUPlace()); paddle::memory::Used(gpu_place); Executor* executor = new Executor(places); // 3 mini-batch for (int i = 0; i < 3; i++) { set_feed_variable(inputs_); executor->Run(pdesc_, GetGlobalScope()); std::vector> result = get_fetch_variable(); PADDLE_ENFORCE_EQ(result.size(), inputs_.size()); for (size_t i = 0; i < result.size(); ++i) { PADDLE_ENFORCE_EQ(result[i].size(), inputs_[i].size()); for (size_t j = 0; j < result[i].size(); ++j) { PADDLE_ENFORCE_EQ(result[i][j], inputs_[i][j]); } } } delete executor; } #endif