// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/save_load_util.h" #include #include "paddle/fluid/imperative/layer.h" namespace paddle { namespace framework { const int model_file_reserve_size = 256; const std::string tensor_number_mark = "TNUM"; // NOLINT const std::string tensor_name_mark = "NAME"; // NOLINT void CheckInStreamState(std::istream& istre, size_t length) { if (!istre) { VLOG(5) << "Can't read [" << length << "] from file" << "file seems breakem"; PADDLE_THROW(platform::errors::Unavailable( "Model load failed, istream state error.")); } } struct DeserializedDataFunctor { DeserializedDataFunctor(void** buf, Tensor* tensor, const platform::Place& place) : buf_(buf), tensor_(tensor), place_(place) {} template void apply() { *buf_ = tensor_->mutable_data(place_); } void** buf_; Tensor* tensor_; platform::Place place_; }; size_t ReadTensorNumber(std::istream& istre) { char* tensor_number_mark_buffer = new char[tensor_number_mark.size()]; istre.read(tensor_number_mark_buffer, sizeof(char) * tensor_number_mark.size()); std::string str_read_tensor_number_mark(tensor_number_mark_buffer, tensor_number_mark.size()); PADDLE_ENFORCE_EQ(tensor_number_mark, str_read_tensor_number_mark, platform::errors::InvalidArgument( "Tensor number mark does not match, expect mark is " "[%s], but the mark read from file is [%s].", tensor_number_mark, str_read_tensor_number_mark)); size_t tensor_number = 0; istre.read(reinterpret_cast(&tensor_number), sizeof(tensor_number)); CheckInStreamState(istre, sizeof(tensor_number)); delete[] tensor_number_mark_buffer; return tensor_number; } std::string ReadTensorName(std::istream& istre) { char* name_mark_buffer = new char[tensor_name_mark.size()]; istre.read(name_mark_buffer, sizeof(char) * tensor_name_mark.size()); CheckInStreamState(istre, sizeof(char) * tensor_name_mark.size()); std::string str_read_tensor_name_mark(name_mark_buffer, tensor_name_mark.size()); PADDLE_ENFORCE_EQ(tensor_name_mark, str_read_tensor_name_mark, platform::errors::InvalidArgument( "Tensor name mark does not match, expect mark is [%s], " "but the mark read from file is [%s].", tensor_name_mark, str_read_tensor_name_mark)); size_t tensor_name_length = 0; istre.read(reinterpret_cast(&tensor_name_length), sizeof(tensor_name_length)); CheckInStreamState(istre, sizeof(tensor_name_length)); char* tensor_name_buffer = new char[tensor_name_length]; istre.read(tensor_name_buffer, sizeof(char) * tensor_name_length); CheckInStreamState(istre, sizeof(char) * tensor_name_length); std::string str_tensor_name(tensor_name_buffer, tensor_name_length); delete[] name_mark_buffer; delete[] tensor_name_buffer; return str_tensor_name; } void ReadReserveBuffer(std::istream& istre) { char* reserve_buffer = new char[model_file_reserve_size]; istre.read(reserve_buffer, sizeof(char) * model_file_reserve_size); CheckInStreamState(istre, model_file_reserve_size); delete[] reserve_buffer; } bool SaveStaticNameListToDisk( const std::string& file_name, const std::vector& vec_tensor_name_list, const Scope& scope) { std::map map_tensor; for (size_t i = 0; i < vec_tensor_name_list.size(); ++i) { auto var_ptr = scope.FindVar(vec_tensor_name_list[i]); PADDLE_ENFORCE_NOT_NULL( var_ptr, platform::errors::NotFound("Variable (%s) is not found when " "saving model, please make sure " "that exe.run(startup_program) has " "been executed.", vec_tensor_name_list[i])); Tensor* tensor = var_ptr->GetMutable(); PADDLE_ENFORCE_EQ(tensor->IsInitialized(), true, platform::errors::PreconditionNotMet( "Paramter [%s] is not initialzed, please make sure " "that exe.run(startup_program) has been executed.", vec_tensor_name_list[i])); map_tensor[vec_tensor_name_list[i]] = tensor; } return SaveTensorToDisk(file_name, map_tensor); } bool SaveDygraphVarBaseListToDisk( const std::string& file_name, const std::vector>& vec_var_base_list) { std::map map_tensor; for (size_t i = 0; i < vec_var_base_list.size(); ++i) { auto var_ptr = vec_var_base_list[i]->MutableVar(); Tensor* tensor = var_ptr->GetMutable(); PADDLE_ENFORCE_EQ(tensor->IsInitialized(), true, platform::errors::PreconditionNotMet( "Paramter [%s] is not initialzed, please make sure " "that exe.run(startup_program) has been executed.", vec_var_base_list[i]->Name())); map_tensor[vec_var_base_list[i]->Name()] = tensor; } return SaveTensorToDisk(file_name, map_tensor); } const std::vector> LoadDygraphVarBaseListFromDisk(const std::string& file_name) { std::map> map_load_tensor; LoadTensorFromDisk(file_name, &map_load_tensor); std::vector> vec_res; vec_res.reserve(map_load_tensor.size()); for (auto& load_tensor : map_load_tensor) { std::shared_ptr var( new imperative::VarBase(load_tensor.first)); auto* tensor = var->MutableVar()->GetMutable(); TensorCopySync(*(load_tensor.second.get()), load_tensor.second->place(), tensor); vec_res.emplace_back(var); } return vec_res; } bool LoadStaticNameListFromDisk( const std::string& file_name, const std::vector& vec_tensor_name_list, const Scope& scope) { std::map> map_load_tensor; LoadTensorFromDisk(file_name, &map_load_tensor); for (size_t i = 0; i < vec_tensor_name_list.size(); ++i) { auto it = map_load_tensor.find(vec_tensor_name_list[i]); PADDLE_ENFORCE_NE(it, map_load_tensor.end(), platform::errors::NotFound( "Parameter (%s) not found in model file (%s).", vec_tensor_name_list[i], file_name)); auto var_ptr = scope.FindVar(vec_tensor_name_list[i]); PADDLE_ENFORCE_NOT_NULL( var_ptr, platform::errors::PreconditionNotMet( "Parameter (%s) is not created when loading model, " "please make sure that exe.run(startup_program) has been executed.", vec_tensor_name_list[i])); Tensor* tensor = var_ptr->GetMutable(); PADDLE_ENFORCE_NOT_NULL( tensor, platform::errors::PreconditionNotMet( "Paramter [%s] is not initialzed, " "please make sure that exe.run(startup_program) has been executed.", vec_tensor_name_list[i])); PADDLE_ENFORCE_EQ(tensor->IsInitialized(), true, platform::errors::PreconditionNotMet( "Paramter [%s] is not initialzed, " "please make sure that exe.run(startup_program) has " "been executed.v", vec_tensor_name_list[i])); PADDLE_ENFORCE_EQ( tensor->dims(), it->second->dims(), platform::errors::InvalidArgument( "Shape does not match, the program requires a parameter with a " "shape of " "(%s), while the loaded parameter (namely [ %s ]) has a shape of " "(%s).", tensor->dims(), vec_tensor_name_list[i], it->second->dims())); TensorCopySync(*(it->second.get()), tensor->place(), tensor); map_load_tensor.erase(it); } if (map_load_tensor.size() > 0) { std::string used_tensor_message = "There is [" + std::to_string(map_load_tensor.size()) + "] tensor in model file not used: "; for (auto& tensor_temp : map_load_tensor) { used_tensor_message += " " + tensor_temp.first; } LOG(ERROR) << used_tensor_message; } return true; } bool SaveTensorToDisk(const std::string& file_name, const std::map& map_tensor) { MkDirRecursively(DirName(file_name).c_str()); std::ofstream fout(file_name, std::ios::binary); PADDLE_ENFORCE_EQ( fout.is_open(), true, platform::errors::Unavailable("File (%s) open failed.", file_name)); // first 256 byte for reserve for fulture upgrade char* kReserveBuffer = new char[model_file_reserve_size]; fout.write(kReserveBuffer, sizeof(char) * model_file_reserve_size); delete[] kReserveBuffer; fout.write(tensor_number_mark.c_str(), sizeof(char) * tensor_number_mark.size()); size_t tensor_number = map_tensor.size(); fout.write(reinterpret_cast(&tensor_number), sizeof(tensor_number)); for (auto& itera : map_tensor) { // first save tensor name fout.write(tensor_name_mark.c_str(), sizeof(char) * tensor_name_mark.size()); size_t name_length = itera.first.size(); fout.write(reinterpret_cast(&name_length), sizeof(name_length)); fout.write(itera.first.c_str(), sizeof(char) * name_length); // write tensor version constexpr uint32_t version = 0; fout.write(reinterpret_cast(&version), sizeof(version)); // the 2nd field, tensor description // int32_t size // void* protobuf message auto tensor = itera.second; proto::VarType::TensorDesc desc; desc.set_data_type(tensor->type()); auto dims = framework::vectorize(tensor->dims()); auto* pb_dims = desc.mutable_dims(); pb_dims->Resize(static_cast(dims.size()), 0); std::copy(dims.begin(), dims.end(), pb_dims->begin()); int32_t size = desc.ByteSize(); fout.write(reinterpret_cast(&size), sizeof(size)); auto out = desc.SerializeAsString(); fout.write(out.data(), size); // save tensor uint64_t data_size = tensor->numel() * framework::SizeOfType(tensor->type()); auto* data_ptr = tensor->data(); if (platform::is_gpu_place(tensor->place())) { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) framework::Tensor temp; TensorCopySync(*tensor, platform::CPUPlace(), &temp); data_ptr = temp.data(); #else PADDLE_THROW(platform::errors::Unavailable( "Tensor is in CUDA device, but paddle not compiled with CUDA.")); #endif } fout.write(static_cast(data_ptr), static_cast(data_size)); } if (!fout) { PADDLE_THROW(platform::errors::Unavailable( "Model save failed, error when writing data into model file [%s].", file_name)); } fout.close(); return true; } bool LoadTensorFromDisk( const std::string& file_name, std::map>* map_tensor) { std::ifstream fin(file_name, std::ios::binary); PADDLE_ENFORCE_EQ( fin.is_open(), true, platform::errors::Unavailable("File (%s) open failed.", file_name)); ReadReserveBuffer(fin); size_t tensor_number = ReadTensorNumber(fin); for (size_t i = 0; i < tensor_number; ++i) { std::string str_tensor_name = ReadTensorName(fin); std::shared_ptr tensor_temp(new Tensor()); uint32_t version; fin.read(reinterpret_cast(&version), sizeof(version)); CheckInStreamState(fin, sizeof(version)); PADDLE_ENFORCE_EQ(version, 0U, platform::errors::InvalidArgument( "Only version 0 tensor is supported.")); proto::VarType::TensorDesc desc; { // int32_t size // proto buffer int32_t size; fin.read(reinterpret_cast(&size), sizeof(size)); CheckInStreamState(fin, sizeof(size)); std::unique_ptr buf(new char[size]); fin.read(reinterpret_cast(buf.get()), size); CheckInStreamState(fin, sizeof(size)); PADDLE_ENFORCE_EQ( desc.ParseFromArray(buf.get(), size), true, platform::errors::InvalidArgument("Parse tensor desc failed.")); } { // read tensor std::vector dims; dims.reserve(static_cast(desc.dims().size())); std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims)); auto new_dim = framework::make_ddim(dims); tensor_temp->Resize(new_dim); void* buf; framework::VisitDataType(desc.data_type(), DeserializedDataFunctor(&buf, tensor_temp.get(), platform::CPUPlace())); size_t size = tensor_temp->numel() * framework::SizeOfType(desc.data_type()); fin.read(reinterpret_cast(buf), size); CheckInStreamState(fin, size); } (*map_tensor)[str_tensor_name] = tensor_temp; } return true; } } // namespace framework } // namespace paddle