// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/log_softmax_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/axis_utils.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace phi { template void LogSoftmaxKernel(const Context& dev_ctx, const DenseTensor& x, int axis, DenseTensor* out) { using XPUType = typename XPUTypeTrait::Type; const int rank = x.dims().size(); axis = funcs::CanonicalAxis(axis, rank); // For 0D Tensor if (rank == 0) { phi::funcs::set_constant(dev_ctx, out, 0.0); return; } if (x.numel() != 0) { auto x_shape = phi::vectorize(x.dims()); dev_ctx.template Alloc(out); if (axis < 0) axis += rank; int r = xpu::log_softmax(dev_ctx.x_context(), reinterpret_cast(x.data()), reinterpret_cast(out->data()), x_shape, axis); PADDLE_ENFORCE_XDNN_SUCCESS(r, "log_softmax"); } } } // namespace phi PD_REGISTER_KERNEL(log_softmax, XPU, ALL_LAYOUT, phi::LogSoftmaxKernel, float) { }