import unittest import numpy as np from op_test import OpTest class TestAucOp(OpTest): def setUp(self): self.op_type = "auc" pred = np.random.random((128)).astype("float32") labels = np.random.randint(0, 2, (128, )) num_thresholds = 200 self.inputs = {'Inference': pred, 'Label': labels} self.attrs = {'curve': 'ROC', 'num_thresholds': num_thresholds} # NOTE: sklearn use a different way to generate thresholds # which will cause the result differs slightly: # from sklearn.metrics import roc_curve, auc # fpr, tpr, thresholds = roc_curve(labels, pred) # auc_value = auc(fpr, tpr) # we caculate AUC again using numpy for testing kepsilon = 1e-7 # to account for floating point imprecisions thresholds = [(i + 1) * 1.0 / (num_thresholds - 1) for i in range(num_thresholds - 2)] thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon] # caculate TP, FN, TN, FP count tp_list = np.ndarray((num_thresholds, )) fn_list = np.ndarray((num_thresholds, )) tn_list = np.ndarray((num_thresholds, )) fp_list = np.ndarray((num_thresholds, )) for idx_thresh, thresh in enumerate(thresholds): tp, fn, tn, fp = 0, 0, 0, 0 for i, lbl in enumerate(labels): if lbl: if pred[i] >= thresh: tp += 1 else: fn += 1 else: if pred[i] >= thresh: fp += 1 else: tn += 1 tp_list[idx_thresh] = tp fn_list[idx_thresh] = fn tn_list[idx_thresh] = tn fp_list[idx_thresh] = fp epsilon = 1e-6 tpr = (tp_list.astype("float32") + epsilon) / ( tp_list + fn_list + epsilon) fpr = fp_list.astype("float32") / (fp_list + tn_list + epsilon) rec = (tp_list.astype("float32") + epsilon) / ( tp_list + fp_list + epsilon) x = fpr[:num_thresholds - 1] - fpr[1:] y = (tpr[:num_thresholds - 1] + tpr[1:]) / 2.0 auc_value = np.sum(x * y) self.outputs = {'AUC': auc_value} def test_check_output(self): self.check_output() if __name__ == "__main__": unittest.main()