// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package paddle import ( "io/ioutil" "os" "testing" ) func TestNewPredictor(t *testing.T) { t.Logf("Version:\n%+v", Version()) config := NewConfig() config.SetModel("./mobilenetv1/inference.pdmodel", "./mobilenetv1/inference.pdiparams") config.EnableUseGpu(100, 0) predictor := NewPredictor(config) inNames := predictor.GetInputNames() t.Logf("InputNames:%+v", inNames) outNames := predictor.GetOutputNames() t.Logf("OutputNames:%+v", outNames) inHandle := predictor.GetInputHandle(inNames[0]) inHandle.Reshape([]int32{1, 3, 224, 224}) t.Logf("inHandle name:%+v, shape:%+v", inHandle.Name(), inHandle.Shape()) var lod [][]uint lod = append(lod, []uint{0, 1, 2}) lod = append(lod, []uint{1, 2, 3, 4}) inHandle.SetLod(lod) t.Logf("inHandle Lod:%+v", inHandle.Lod()) data := make([]float32, numElements([]int32{1, 3, 224, 224})) for i := 0; i < int(numElements([]int32{1, 3, 224, 224})); i++ { data[i] = float32(i%255) * 0.1 } inHandle.CopyFromCpu(data) t.Logf("inHandle Type:%+v", inHandle.Type()) predictor.Run() outHandle := predictor.GetOutputHandle(outNames[0]) t.Logf("outHandle name:%+v", outHandle.Name()) outShape := outHandle.Shape() t.Logf("outHandle Shape:%+v", outShape) outData := make([]float32, numElements(outShape)) outHandle.CopyToCpu(outData) t.Log(outData) cloned := predictor.Clone() t.Logf("InputNum:%+v", cloned.GetInputNum()) t.Logf("OutputNum:%+v", cloned.GetInputNum()) cloned.ClearIntermediateTensor() } func TestFromBuffer(t *testing.T) { modelFile, err := os.Open("./mobilenetv1/inference.pdmodel") if err != nil { t.Fatal(err) } paramsFile, err := os.Open("./mobilenetv1/inference.pdiparams") if err != nil { t.Fatal(err) } defer modelFile.Close() defer paramsFile.Close() model, err := ioutil.ReadAll(modelFile) if err != nil { t.Fatal(err) } params, err := ioutil.ReadAll(paramsFile) if err != nil { t.Fatal(err) } config := NewConfig() config.SetModelBuffer(string(model), string(params)) predictor := NewPredictor(config) inNames := predictor.GetInputNames() outNames := predictor.GetOutputNames() inHandle := predictor.GetInputHandle(inNames[0]) inHandle.Reshape([]int32{1, 3, 224, 224}) data := make([]float32, numElements([]int32{1, 3, 224, 224})) for i := 0; i < int(numElements([]int32{1, 3, 224, 224})); i++ { data[i] = float32(i%255) * 0.1 } inHandle.CopyFromCpu(data) predictor.Run() outHandle := predictor.GetOutputHandle(outNames[0]) outShape := outHandle.Shape() t.Logf("outHandle Shape:%+v", outShape) outData := make([]float32, numElements(outShape)) outHandle.CopyToCpu(outData) t.Log(outData) } func numElements(shape []int32) int32 { n := int32(1) for _, v := range shape { n *= v } return n }