// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/imperative/layer.h" #include "paddle/fluid/eager/eager_tensor.h" #include "paddle/fluid/framework/convert_utils.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/imperative/infer_var_type_context.h" #include "paddle/fluid/imperative/op_base.h" #include "paddle/fluid/imperative/prepared_operator.h" #include "paddle/fluid/imperative/var_helper.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/profiler.h" #include "paddle/pten/kernels/funcs/math_function.h" #ifdef PADDLE_WITH_MKLDNN #include "paddle/fluid/platform/mkldnn_helper.h" #endif DECLARE_bool(use_mkldnn); namespace paddle { namespace imperative { using framework::Variable; void ThreadSafeNameSet::Insert(const std::string& name) { std::lock_guard guard(mtx_); set_.insert(name); } void ThreadSafeNameSet::Remove(const std::string& name) { std::lock_guard guard(mtx_); auto iter = set_.find(name); PADDLE_ENFORCE_EQ( iter != set_.end(), true, platform::errors::NotFound("Variable name %s does not exist", name)); set_.erase(iter); } std::vector ThreadSafeNameSet::Names() const { std::lock_guard guard(mtx_); return std::vector(set_.begin(), set_.end()); } ThreadSafeNameSet VarBase::name_set_; std::vector VarBase::AliveVarNames() { return name_set_.Names(); } static framework::RuntimeContext PrepareRuntimeContext( const NameVarBaseMap& ins, const NameVarBaseMap& outs) { framework::VariableValueMap inputs, outputs; for (auto& in_pair : ins) { auto& in_ctx = inputs[in_pair.first]; in_ctx.reserve(in_pair.second.size()); for (auto& in_var : in_pair.second) { in_ctx.emplace_back(in_var->MutableVar()); } } for (auto& out_pair : outs) { auto& out_ctx = outputs[out_pair.first]; out_ctx.reserve(out_pair.second.size()); for (auto& out_var : out_pair.second) { out_ctx.emplace_back(out_var->MutableVar()); } } return framework::RuntimeContext(std::move(inputs), std::move(outputs)); } template static std::string DebugString( const std::string& name, const std::vector>& vars) { std::stringstream ss; ss << name << "{"; for (size_t i = 0; i < vars.size(); ++i) { if (i > 0) ss << ", "; if (vars[i] == nullptr) { ss << "NULL"; continue; } ss << GetNameFromVar(vars[i]) << "["; const framework::Variable& var = vars[i]->Var(); if (!var.IsInitialized()) { ss << "NOT_INITED_VAR"; } else if (var.IsType()) { auto& tensor = var.Get(); ss << "LoDTensor<"; if (tensor.IsInitialized()) { ss << framework::DataTypeToString( framework::TransToProtoVarType(tensor.dtype())) << ", "; ss << tensor.place() << ", "; ss << "(" << tensor.dims() << ")"; } else { ss << "NOT_INITED"; } ss << ">"; } else if (var.IsType()) { ss << "SelectedRows<"; auto& selected_rows = var.Get(); auto& tensor = selected_rows.value(); auto& rows = selected_rows.rows(); if (tensor.IsInitialized()) { ss << framework::DataTypeToString( framework::TransToProtoVarType(tensor.dtype())) << ", "; ss << tensor.place() << ", "; ss << "height(" << selected_rows.height() << "), rows("; std::for_each(rows.cbegin(), rows.cend(), [&ss](const int64_t r) { ss << r << " "; }); ss << "), dims(" << tensor.dims() << ")"; } else { ss << "NOT_INITED"; } ss << ">"; } else { ss << "UNRESOLVED_TYPE"; } ss << "]"; } ss << "}"; return ss.str(); } template static std::string LayerDebugStringImpl(const std::string& op_type, const NameVarMap& ins, const NameVarMap& outs) { std::stringstream ss; ss << "Op(" << op_type << "): "; ss << "Inputs: "; size_t i = 0; for (auto& pair : ins) { if (i > 0) ss << ", "; ss << DebugString(pair.first, pair.second); ++i; } ss << ", Outputs: "; i = 0; for (auto& pair : outs) { if (i > 0) ss << ", "; ss << DebugString(pair.first, pair.second); ++i; } return ss.str(); } std::string LayerDebugString(const std::string& op_type, const NameVarMap& ins, const NameVarMap& outs) { return LayerDebugStringImpl(op_type, ins, outs); } std::string LayerDebugString(const std::string& op_type, const NameVarMap& ins, const NameVarMap& outs) { return LayerDebugStringImpl(op_type, ins, outs); } std::string LayerDebugString(const std::string& op_type, const NameVarMap& ins, const NameVarMap& outs) { return LayerDebugStringImpl(op_type, ins, outs); } template static void SetForwardDataTypeOfGradVars(const NameVarMap& outs) { for (auto& var_pair : outs) { for (auto& var : var_pair.second) { // NOTE(zhiqu): The ouput may be NULL because of pruning. if (var) { SetForwardDataTypeOfGradVar(var); } } } } template <> void SetForwardDataTypeOfGradVars( const NameVarMap& outs) { // In eager mode we don't need this. } void TestSetForwardDataTypeOfGradVarsEager( const NameVarMap& outs) { SetForwardDataTypeOfGradVars(outs); } VarBase::VarBase(const std::shared_ptr& var) : var_(var), grad_node_(var->GetGradNode()) { if (auto grad_var = var_->GetGradVar()) { grad_var_ = std::make_shared(grad_var); } if (IsDebugEnabled()) { VLOG(10) << "Construct VarBase: " << Name(); name_set_.Insert(Name()); } } size_t VarBase::GradOpNum() const { return grad_node_ ? grad_node_->size() : 0; } void VarBase::ClearGradient(bool set_to_zero) { VLOG(4) << "ClearGradient " << Name(); if (grad_var_) { if (grad_var_->Var().IsType()) { auto* grad_t = grad_var_->MutableVar()->GetMutable(); if (grad_t->mutable_value()->IsInitialized()) { #ifdef PADDLE_WITH_MKLDNN if (FLAGS_use_mkldnn) platform::ClearMKLDNNCache(grad_t->place()); #endif grad_t->mutable_rows()->clear(); grad_t->mutable_value()->clear(); } } else { platform::RecordEvent record_event("ClearGradient"); auto* grad_t = grad_var_->MutableVar()->GetMutable(); if (grad_t->IsInitialized()) { if (set_to_zero) { auto* dev_ctx = platform::DeviceContextPool::Instance().Get(grad_t->place()); pten::funcs::set_constant(*dev_ctx, grad_t, 0.0); } else { grad_t->clear(); } #ifdef PADDLE_WITH_MKLDNN if (FLAGS_use_mkldnn) platform::ClearMKLDNNCache(grad_t->place()); #endif } } // TODO(zhouwei): It's better to free memory of grad by grad_t->claer. // But will have some bug on mac CPU of yolov3 model, why? // After fix this bug, function SetIsEmpty() isn't need grad_var_->SharedVar()->SetIsEmpty(true); } } void VarBase::_GradientSetEmpty(bool is_empty) { VLOG(4) << "Set gradient " << Name() << " is_empty:" << is_empty; if (grad_var_) { auto share_var = grad_var_->SharedVar(); if (share_var) { share_var->SetIsEmpty(is_empty); } } } bool VarBase::_IsGradientSetEmpty() { bool res = true; if (grad_var_) { auto share_var = grad_var_->SharedVar(); if (share_var) { res = share_var->is_empty_; VLOG(4) << "Check gradient " << Name() << " is empty:" << res; } } return res; } std::shared_ptr VarBase::NewVarBase(const platform::Place& dst_place, const bool blocking) const { PADDLE_ENFORCE_EQ( Var().IsInitialized() && (Var().IsType() || Var().IsType()), true, platform::errors::InvalidArgument( "Variable is not initialized or Variable's type is not " "LoDTensor or SelectedRows when getting numpy tensor")); if (Var().IsType()) { auto& src_tensor = Var().Get(); // TODO(Jiabin): change this after move unique_name generator to CXX auto new_var = std::make_shared( true, Name() + std::to_string(copied_counter_++)); auto* dst_tensor = new_var->MutableVar()->GetMutable(); dst_tensor->set_lod(src_tensor.lod()); new_var->SetPersistable(Persistable()); new_var->SetDataType(DataType()); new_var->SetType(Type()); framework::TensorCopy(src_tensor, dst_place, dst_tensor); if (blocking) { platform::DeviceContextPool::Instance().Get(dst_place)->Wait(); auto src_place = src_tensor.place(); if (!(src_place == dst_place)) { platform::DeviceContextPool::Instance().Get(src_place)->Wait(); } } VLOG(4) << "copy tensor " << Name() << " from " << Place() << " to " << dst_place; return new_var; } else { auto& src_selected_rows = Var().Get(); auto new_var = std::make_shared( false, "Itmp" + std::to_string(copied_counter_++)); new_var->SetType(framework::proto::VarType::SELECTED_ROWS); auto* dst_selected_rows = new_var->MutableVar()->GetMutable(); framework::TensorCopy(src_selected_rows.value(), dst_place, dst_selected_rows->mutable_value()); if (blocking) { platform::DeviceContextPool::Instance().Get(dst_place)->Wait(); auto src_place = src_selected_rows.place(); if (!(src_place == dst_place)) { platform::DeviceContextPool::Instance().Get(src_place)->Wait(); } } dst_selected_rows->set_height(src_selected_rows.height()); dst_selected_rows->set_rows(src_selected_rows.rows()); VLOG(4) << "copy tensor " << Name() << " from " << Place() << " to " << dst_place; return new_var; } } void VarBase::CopyFrom(const VarBase& src, const bool blocking) { if (src.SharedVar()->IsEmpty()) { return; } VLOG(3) << "Deep copy Tensor from " << src.Name() << " to " << Name(); if (Var().IsInitialized()) { PADDLE_ENFORCE_EQ(DataType(), src.DataType(), platform::errors::PreconditionNotMet( "Tensor %s has different data type with Tensor %s, " "Tensor Copy cannot be performed!", Name(), src.Name())); PADDLE_ENFORCE_EQ(Type(), src.Type(), platform::errors::PreconditionNotMet( "Tensor %s has different type with Tensor %s, Tensor " "Copy cannot be performed!", Name(), src.Name())); } else { SetDataType(src.DataType()); SetType(src.Type()); SetPersistable(src.Persistable()); InnerSetOverridedStopGradient(src.OverridedStopGradient()); } platform::Place place = src.Place(); if (src.Var().IsType()) { auto& src_tensor = src.Var().Get(); auto* dst_tensor = MutableVar()->GetMutable(); if (dst_tensor && dst_tensor->IsInitialized()) { PADDLE_ENFORCE_EQ(dst_tensor->dims(), src_tensor.dims(), platform::errors::PreconditionNotMet( "Tensor %s has different dims with Tensor %s, " "Tensor Copy cannot be performed!", Name(), src.Name())); PADDLE_ENFORCE_EQ(dst_tensor->lod(), src_tensor.lod(), platform::errors::PreconditionNotMet( "Tensor %s has different dims with Tensor %s, " "Tensor Copy cannot be performed!", Name(), src.Name())); place = Place(); } else { dst_tensor->set_lod(src_tensor.lod()); dst_tensor->Resize(src_tensor.dims()); } framework::TensorCopy(src_tensor, place, dst_tensor); } else if (src.Var().IsType()) { auto& src_selected_rows = src.Var().Get(); auto* dst_selected_rows = MutableVar()->GetMutable(); dst_selected_rows->set_height(src_selected_rows.height()); dst_selected_rows->set_rows(src_selected_rows.rows()); auto& src_tensor = src_selected_rows.value(); auto* dst_tensor = dst_selected_rows->mutable_value(); if (dst_tensor && dst_tensor->IsInitialized()) { PADDLE_ENFORCE_EQ(dst_tensor->dims(), src_tensor.dims(), platform::errors::PreconditionNotMet( "Tensor %s has different dims with Tensor %s, " "Tensor Copy cannot be performed!", Name(), src.Name())); place = Place(); } else { dst_tensor->Resize(src_tensor.dims()); } framework::TensorCopy(src_tensor, place, dst_tensor); } if (blocking) { platform::DeviceContextPool::Instance().Get(place)->Wait(); } } void VarBase::BumpInplaceVersion() { PADDLE_ENFORCE_EQ( Var().IsInitialized(), true, platform::errors::InvalidArgument( "Tensor %s has not been initialized, please check if it has no data.", Name())); MutableVar()->BumpInplaceVersion(); } // NOTE(weilong wu): // This function try to copy the data from target varbase, // and fill into the grad_var_ of the current varbase. void VarBase::_CopyGradientFrom(const VarBase& src) { if (Var().IsInitialized()) { PADDLE_ENFORCE_EQ(DataType(), src.DataType(), platform::errors::PreconditionNotMet( "Tensor %s has different data type with Tensor %s", Name(), src.Name())); PADDLE_ENFORCE_EQ(Type(), src.Type(), platform::errors::PreconditionNotMet( "Tensor %s has different type with Tensor %s, Tensor " "ShareGradientDataWith cannot be performed!", Name(), src.Name())); } VLOG(4) << " VarBase copy gradient with " << src.Name(); if (grad_var_) { auto& src_tensor = src.Var().Get(); PADDLE_ENFORCE_EQ(src_tensor.IsInitialized(), true, platform::errors::InvalidArgument( "Tensor %s has not been initialized", src.Name())); auto* grad_t = grad_var_->MutableVar()->GetMutable(); auto* var_ = MutableVar()->GetMutable(); grad_t->ShareDataWith(src_tensor); grad_t->Resize(var_->dims()); } } void OpBase::SetType(const std::string& type) { op_ = framework::OpRegistry::CreateOp(type, {}, {}, {}, false); } void OpBase::ClearBackwardTrace() { ins_.clear(); outs_.clear(); } template static void OpBaseRunImpl(const framework::OperatorBase& op, const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs, const platform::Place& place) { auto* op_kernel = dynamic_cast(&op); PADDLE_ENFORCE_NOT_NULL( op_kernel, platform::errors::PermissionDenied( "Only support operator with kernel in Dygraph mode.")); auto& info = op.Info(); if (info.infer_var_type_) { RuntimeInferVarTypeContext infer_var_type_ctx(ins, outs, attrs, default_attrs); info.infer_var_type_(&infer_var_type_ctx); } // Initialize output var type for (auto& var_pair : outs) { for (auto& var : var_pair.second) { if (var) { InitializeVariable(var->MutableVar(), GetType(var)); } } } VLOG(5) << LayerDebugString(op.Type(), ins, outs); /** * [ Why need temporary inputs here? ] * * PrepareData should not change original input tensor inplace. * Suppose the user defines a tensor(int), enters an op to execute, * and then this op rewrites GetExpectedKernelForVar, and converts * this tensor to float type during execution. After the dynamic * graph is executed, the user-defined variable will be lost, and * the user cannot get the originally defined int tensor, because * it has been converted to float, this should be regarded as a bug * in certain usage scenarios * * In static graph mode, when op is executed, a temporary scope * `transfer_scope` is created before PrepareData, the data after * transform is stored in the temporary scope, and then discarded * after the execution of op, but the original input is directly * overwritten in the previous dynamic graph implemention. */ auto prepared_op = PreparedOp::Prepare(ins, outs, *op_kernel, place, attrs, default_attrs); auto tmp_ins_ptr = PrepareData(*op_kernel, ins, prepared_op.kernel_type()); if (tmp_ins_ptr == nullptr) { prepared_op.Run(ins, outs, attrs, default_attrs); } else { prepared_op.Run(*tmp_ins_ptr, outs, attrs, default_attrs); } VLOG(4) << LayerDebugString(op.Type(), ins, outs); // set the output var SetForwardDataTypeOfGradVars(outs); } void OpBase::Run(const framework::OperatorBase& op, const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs, const platform::Place& place) { OpBaseRunImpl(op, ins, outs, attrs, default_attrs, place); } void OpBase::Run(const framework::OperatorBase& op, const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs, const platform::Place& place) { OpBaseRunImpl(op, ins, outs, attrs, default_attrs, place); } void OpBase::Run(const framework::OperatorBase& op, const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs, const platform::Place& place) { OpBaseRunImpl(op, ins, outs, attrs, default_attrs, place); } void ClearNoNeedBufferInputs(OpBase* op) { auto& inferer = op->Info().NoNeedBufferVarsInferer(); if (!inferer) return; auto* ins = op->GetMutableInsMap(); const auto& no_need_buffer_slots = inferer(*ins, op->GetOutsMap(), op->Attrs()); if (no_need_buffer_slots.empty()) return; for (auto& slot : no_need_buffer_slots) { auto iter = ins->find(slot); if (iter == ins->end()) continue; VLOG(2) << "Clear data buffer of " << slot << " in " << op->Type(); PADDLE_ENFORCE_EQ( iter->second.IsGrad(), false, platform::errors::InvalidArgument( "Only forward variable buffers can be clear, this may be a bug")); for (auto& each_var : *(iter->second.MutableVarList())) { if (!each_var) continue; auto& var = each_var->Var(); PADDLE_ENFORCE_EQ(var.IsType(), true, platform::errors::PermissionDenied( "NoNeedBufferVars only support LoDTensor")); auto new_var = new VariableWrapper(each_var->Name()); auto* new_tensor = new_var->MutableVar()->GetMutable(); auto& old_tensor = var.Get(); new_tensor->Resize(old_tensor.dims()); new_tensor->set_lod(old_tensor.lod()); each_var.reset(new_var); } } } std::shared_ptr CreateGradOpNode( const framework::OperatorBase& op, const NameVarBaseMap& ins, const NameVarBaseMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs, const platform::Place& place, const std::map& inplace_map) { const auto& info = op.Info(); if (!info.dygraph_grad_op_maker_) { return nullptr; } auto grad_node = info.dygraph_grad_op_maker_(op.Type(), ins, outs, attrs, default_attrs, inplace_map); if (grad_node && !grad_node->empty()) { for (auto& grad_op : *grad_node) { grad_op.SetId(OpBase::GenerateUniqueId()); grad_op.SetPlace(place); ClearNoNeedBufferInputs(&grad_op); } return grad_node; } else { return nullptr; } } std::shared_ptr CreateGradOpNode( const framework::OperatorBase& op, const NameTensorMap& ins, const NameTensorMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs, const platform::Place& place, const std::map& inplace_map) { // Do Nothing in Eager Mode. return nullptr; } } // namespace imperative } // namespace paddle