# copyright (c) 2018 paddlepaddle authors. all rights reserved. # # licensed under the apache license, version 2.0 (the "license"); # you may not use this file except in compliance with the license. # you may obtain a copy of the license at # # http://www.apache.org/licenses/license-2.0 # # unless required by applicable law or agreed to in writing, software # distributed under the license is distributed on an "as is" basis, # without warranties or conditions of any kind, either express or implied. # see the license for the specific language governing permissions and # limitations under the license. import unittest import os import numpy as np import time import sys import random import paddle import paddle.fluid as fluid import functools import contextlib from paddle.dataset.common import download from PIL import Image, ImageEnhance import math import paddle.fluid.contrib.int8_inference.utility as int8_utility random.seed(0) np.random.seed(0) DATA_DIM = 224 THREAD = 1 BUF_SIZE = 102400 DATA_DIR = 'data/ILSVRC2012' img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) # TODO(guomingz): Remove duplicated code from resize_short, crop_image, process_image, _reader_creator def resize_short(img, target_size): percent = float(target_size) / min(img.size[0], img.size[1]) resized_width = int(round(img.size[0] * percent)) resized_height = int(round(img.size[1] * percent)) img = img.resize((resized_width, resized_height), Image.LANCZOS) return img def crop_image(img, target_size, center): width, height = img.size size = target_size if center == True: w_start = (width - size) / 2 h_start = (height - size) / 2 else: w_start = np.random.randint(0, width - size + 1) h_start = np.random.randint(0, height - size + 1) w_end = w_start + size h_end = h_start + size img = img.crop((w_start, h_start, w_end, h_end)) return img def process_image(sample, mode, color_jitter, rotate): img_path = sample[0] img = Image.open(img_path) img = resize_short(img, target_size=256) img = crop_image(img, target_size=DATA_DIM, center=True) if img.mode != 'RGB': img = img.convert('RGB') img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255 img -= img_mean img /= img_std return img, sample[1] def _reader_creator(file_list, mode, shuffle=False, color_jitter=False, rotate=False, data_dir=DATA_DIR): def reader(): with open(file_list) as flist: full_lines = [line.strip() for line in flist] if shuffle: np.random.shuffle(full_lines) lines = full_lines for line in lines: img_path, label = line.split() img_path = os.path.join(data_dir, img_path) if not os.path.exists(img_path): continue yield img_path, int(label) mapper = functools.partial( process_image, mode=mode, color_jitter=color_jitter, rotate=rotate) return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE) def val(data_dir=DATA_DIR): file_list = os.path.join(data_dir, 'val_list.txt') return _reader_creator(file_list, 'val', shuffle=False, data_dir=data_dir) class TestCalibrationForResnet50(unittest.TestCase): def setUp(self): self.int8_download = 'int8/download' self.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' + self.int8_download) data_urls = [] data_md5s = [] self.data_cache_folder = '' if os.environ.get('DATASET') == 'full': data_urls.append( 'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa' ) data_md5s.append('60f6525b0e1d127f345641d75d41f0a8') data_urls.append( 'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab' ) data_md5s.append('1e9f15f64e015e58d6f9ec3210ed18b5') self.data_cache_folder = self.download_data(data_urls, data_md5s, "full_data", False) else: data_urls.append( 'http://paddle-inference-dist.cdn.bcebos.com/int8/calibration_test_data.tar.gz' ) data_md5s.append('1b6c1c434172cca1bf9ba1e4d7a3157d') self.data_cache_folder = self.download_data(data_urls, data_md5s, "small_data", False) # reader/decorator.py requires the relative path to the data folder cmd = 'rm -rf {0} && ln -s {1} {0}'.format("data", self.data_cache_folder) os.system(cmd) self.batch_size = 1 self.sample_iterations = 50 self.infer_iterations = 50000 if os.environ.get( 'DATASET') == 'full' else 50 def cache_unzipping(self, target_folder, zip_path): if not os.path.exists(target_folder): cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder, zip_path) os.system(cmd) def download_data(self, data_urls, data_md5s, folder_name, is_model=True): data_cache_folder = os.path.join(self.cache_folder, folder_name) zip_path = '' if os.environ.get('DATASET') == 'full': file_names = [] for i in range(0, len(data_urls)): download(data_urls[i], self.int8_download, data_md5s[i]) file_names.append(data_urls[i].split('/')[-1]) zip_path = os.path.join(self.cache_folder, 'full_imagenet_val.tar.gz') if not os.path.exists(zip_path): cat_command = 'cat' for file_name in file_names: cat_command += ' ' + os.path.join(self.cache_folder, file_name) cat_command += ' > ' + zip_path os.system(cat_command) if os.environ.get('DATASET') != 'full' or is_model: download(data_urls[0], self.int8_download, data_md5s[0]) file_name = data_urls[0].split('/')[-1] zip_path = os.path.join(self.cache_folder, file_name) print('Data is downloaded at {0}').format(zip_path) self.cache_unzipping(data_cache_folder, zip_path) return data_cache_folder def download_model(self): # resnet50 fp32 data data_urls = [ 'http://paddle-inference-dist.cdn.bcebos.com/int8/resnet50_int8_model.tar.gz' ] data_md5s = ['4a5194524823d9b76da6e738e1367881'] self.model_cache_folder = self.download_data(data_urls, data_md5s, "resnet50_fp32") self.model = "ResNet-50" self.algo = "direct" def run_program(self, model_path, generate_int8=False, algo='direct'): image_shape = [3, 224, 224] fluid.memory_optimize(fluid.default_main_program()) exe = fluid.Executor(fluid.CPUPlace()) [infer_program, feed_dict, fetch_targets] = fluid.io.load_inference_model(model_path, exe) t = fluid.transpiler.InferenceTranspiler() t.transpile(infer_program, fluid.CPUPlace()) val_reader = paddle.batch(val(), self.batch_size) iterations = self.infer_iterations if generate_int8: int8_model = os.path.join(os.getcwd(), "calibration_out") iterations = self.sample_iterations if os.path.exists(int8_model): os.system("rm -rf " + int8_model) os.system("mkdir " + int8_model) calibrator = int8_utility.Calibrator( program=infer_program, pretrained_model=model_path, algo=algo, exe=exe, output=int8_model, feed_var_names=feed_dict, fetch_list=fetch_targets) test_info = [] cnt = 0 periods = [] for batch_id, data in enumerate(val_reader()): image = np.array( [x[0].reshape(image_shape) for x in data]).astype("float32") label = np.array([x[1] for x in data]).astype("int64") label = label.reshape([-1, 1]) running_program = calibrator.sampling_program.clone( ) if generate_int8 else infer_program.clone() t1 = time.time() _, acc1, _ = exe.run( running_program, feed={feed_dict[0]: image, feed_dict[1]: label}, fetch_list=fetch_targets) t2 = time.time() period = t2 - t1 periods.append(period) if generate_int8: calibrator.sample_data() test_info.append(np.mean(acc1) * len(data)) cnt += len(data) if (batch_id + 1) % 100 == 0: print("{0} images,".format(batch_id + 1)) sys.stdout.flush() if (batch_id + 1) == iterations: break if generate_int8: calibrator.save_int8_model() print( "Calibration is done and the corresponding files are generated at {}". format(os.path.abspath("calibration_out"))) else: throughput = cnt / np.sum(periods) latency = np.average(periods) acc1 = np.sum(test_info) / cnt return (throughput, latency, acc1) def test_calibration(self): self.download_model() print("Start FP32 inference for {0} on {1} images ...").format( self.model, self.infer_iterations) (fp32_throughput, fp32_latency, fp32_acc1) = self.run_program(self.model_cache_folder + "/model") print("Start INT8 calibration for {0} on {1} images ...").format( self.model, self.sample_iterations) self.run_program( self.model_cache_folder + "/model", True, algo=self.algo) print("Start INT8 inference for {0} on {1} images ...").format( self.model, self.infer_iterations) (int8_throughput, int8_latency, int8_acc1) = self.run_program("calibration_out") delta_value = fp32_acc1 - int8_acc1 self.assertLess(delta_value, 0.01) print( "FP32 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}". format(self.model, self.batch_size, fp32_throughput, fp32_latency, fp32_acc1)) print( "INT8 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}". format(self.model, self.batch_size, int8_throughput, int8_latency, int8_acc1)) sys.stdout.flush() class TestCalibrationForMobilenetv1(TestCalibrationForResnet50): def download_model(self): # mobilenetv1 fp32 data data_urls = [ 'http://paddle-inference-dist.cdn.bcebos.com/int8/mobilenetv1_int8_model.tar.gz' ] data_md5s = ['13892b0716d26443a8cdea15b3c6438b'] self.model_cache_folder = self.download_data(data_urls, data_md5s, "mobilenetv1_fp32") self.model = "MobileNet-V1" self.algo = "KL" if __name__ == '__main__': unittest.main()