// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/fusion/moe_kernel.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/elementwise_base.h" #include "paddle/phi/kernels/fusion/cutlass/moe/moe_kernel_impl.h" // Ignore CUTLASS warnings about type punning #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wstrict-aliasing" #pragma GCC diagnostic ignored "-Wunused-function" #include "cutlass/array.h" #include "cutlass/epilogue/thread/linear_combination.h" #include "cutlass/epilogue/thread/linear_combination_relu.h" #include "cutlass/gemm/device/gemm_grouped.h" #include "cutlass/gemm/gemm.h" #include "cutlass/gemm/kernel/default_gemm_grouped.h" #include "cutlass/numeric_conversion.h" #include "paddle/phi/backends/gpu/gpu_info.h" #include "paddle/phi/kernels/fusion/cutlass/moe/default_moe_fc_traits.h" #include "paddle/phi/kernels/fusion/cutlass/moe/linear_combination_ft_gelu.h" #include "paddle/phi/kernels/fusion/cutlass/moe/moe_cutlass_kernel.h" #pragma GCC diagnostic pop namespace phi { namespace { inline int getSMVersion() { const int device = phi::backends::gpu::GetCurrentDeviceId(); const phi::gpuDeviceProp prop = phi::backends::gpu::GetDeviceProperties(device); return prop.major * 10 + prop.minor; } struct EpilogueOpBiasReLU {}; struct EpilogueOpBiasFtGelu {}; struct EpilogueOpBias {}; struct EpilogueOpNoBias {}; template struct Epilogue {}; template struct Epilogue { using Op = cutlass::epilogue::thread::LinearCombinationRelu< ElementType, ElementsPerVectorAccess, ElementAccumulator, ElementAccumulator, cutlass::epilogue::thread::ScaleType::NoBetaScaling>; }; template struct Epilogue { using Op = cutlass::epilogue::thread::LinearCombinationFtGelu< ElementType, ElementsPerVectorAccess, ElementAccumulator, ElementAccumulator, cutlass::epilogue::thread::ScaleType::NoBetaScaling>; }; template struct Epilogue { using Op = cutlass::epilogue::thread::LinearCombination< ElementType, ElementsPerVectorAccess, ElementAccumulator, ElementAccumulator, cutlass::epilogue::thread::ScaleType::NoBetaScaling>; }; template struct Epilogue { using Op = cutlass::epilogue::thread::LinearCombination< ElementType, ElementsPerVectorAccess, ElementAccumulator, ElementAccumulator, cutlass::epilogue::thread::ScaleType::Nothing>; }; } // namespace namespace fusion { template void InitExpertChoiceRouteKernelLauncher( int* expert_for_source_row, int* source_row, int* expanded_source_row_to_expanded_dest_row, int64_t* total_rows_before_expert, T* attr_mask, const int num_experts, const int num_rows, const int k, const int batch_size, cudaStream_t stream) { const int threads = 128; const int blocks = num_experts; initialize_expert_choice_route_kernel<<>>( expert_for_source_row, source_row, expanded_source_row_to_expanded_dest_row, total_rows_before_expert, attr_mask, num_rows, k, batch_size); } #define SOFTMAX_KERNEL(ITEMS_PER_THREAD) \ block.x /= ITEMS_PER_THREAD; \ assert(block.x <= 1024); \ if (is_half2) { \ if (grid.x % 4 == 0) { \ grid.x /= 4; \ softmax_kernel_v5_half2<__half, ITEMS_PER_THREAD, 4> \ <<>>(reinterpret_cast(buffer), \ (const half*)attr_mask, \ batch_size, \ seq_len); \ } else { \ softmax_kernel_v4_half2<__half, ITEMS_PER_THREAD> \ <<>>(reinterpret_cast(buffer), \ (const half*)attr_mask, \ batch_size, \ seq_len); \ } \ } else { \ softmax_kernel_v4<<>>( \ buffer, buffer_src, attr_mask, batch_size, seq_len); \ } template void invokeMaskedSoftMax(T* buffer, const T* buffer_src, const T* attr_mask, const int batch_size, const int seq_len, cudaStream_t stream) { // NOTE: attention scores shape (batch_size, seq_len) dim3 grid(1, batch_size, 1); if (batch_size > 360) { grid.x = ceil(static_cast(1) / 32.0f); } bool is_half2 = sizeof(T) == 2 && sizeof(T) == 2 && seq_len % 2 == 0; dim3 block((seq_len / (is_half2 ? 2 : 1) + 31) / 32 * 32); if (block.x > 2048 && block.x <= 4096) { SOFTMAX_KERNEL(4) } else if (block.x > 1024) { SOFTMAX_KERNEL(2) } else if (block.x > 0) { SOFTMAX_KERNEL(1) } else { PADDLE_ENFORCE_EQ(true, false, phi::errors::InvalidArgument( "Softmax kernel only support columns in 0 - 4096. ")); } } template void InvokeTransposeAxis01(T* out, T* in, const int dim0, const int dim1, const int dim2, cudaStream_t stream) { dim3 block(512); dim3 grid(static_cast(ceil(dim0 * dim1 * dim2 / 512.))); transposeAxis01<<>>(out, in, dim0, dim1, dim2); } template void InvokePadding(T* output1, int* output2, const T* input1, const int* input2, const int* input_lengths, const int num_tokens, const int batch_size, const int max_seq_len, const int num_experts, cudaStream_t stream) { assert(max_seq_len <= 1024); dim3 block(max_seq_len); dim3 grid(num_experts); paddingKernel<<>>(output1, output2, input1, input2, input_lengths, num_tokens, batch_size, max_seq_len, num_experts); } template void InvokeGeneralTopKPairSort(T* out_keys, int* out_values, T* in_keys, int* in_values, const int m, const int n, cudaStream_t stream) { assert(n <= 4096); const int blocks = m; if (n == 128) { general_topk_pair_sort <<>>(out_keys, out_values, in_keys, in_values); } if (n == 256) { general_topk_pair_sort <<>>(out_keys, out_values, in_keys, in_values); } if (n == 1024) { general_topk_pair_sort <<>>(out_keys, out_values, in_keys, in_values); } else if (n == 2048) { general_topk_pair_sort <<>>(out_keys, out_values, in_keys, in_values); } else if (n == 4096) { general_topk_pair_sort <<>>(out_keys, out_values, in_keys, in_values); } } template void InitMoeRoutingKernelLauncher( const T* unpermuted_input, T* permuted_output, const int* expanded_dest_row_to_expanded_source_row, int* expanded_source_row_to_expanded_dest_row, const int num_experts, const int num_rows, const int active_rows, const int cols, const int k, const int batch_size, const int max_seq_len, bool ec_route, cudaStream_t stream) { const int blocks = ec_route ? num_experts * k * batch_size : num_rows * k; if (ec_route) { constexpr int max_pack_size = 16 / sizeof(T); const int threads = std::min(cols / max_pack_size, 1024); if (cols % max_pack_size == 0) { initialize_moe_routing_kernel <<>>( unpermuted_input, permuted_output, expanded_dest_row_to_expanded_source_row, expanded_source_row_to_expanded_dest_row, num_rows, batch_size * k * num_experts, cols, k, max_seq_len, ec_route); } else { initialize_moe_routing_kernel<<>>( unpermuted_input, permuted_output, expanded_dest_row_to_expanded_source_row, expanded_source_row_to_expanded_dest_row, num_rows, batch_size * k * num_experts, cols, k, max_seq_len, ec_route); } } else { PADDLE_THROW(paddle::platform::errors::InvalidArgument( "Currently only support `ec_route = True`. ")); } } template void GenericMoeGemmKernelLauncher(const T* A, const T* B, const T* weight_scales, const T* biases, T* C, int64_t* total_rows_before_expert, int64_t gemm_n, int64_t gemm_k, int num_experts, const int multi_processor_count, cudaStream_t stream) { static_assert(cutlass::platform::is_same::value || cutlass::platform::is_same::value, "Specialized for half, float"); static_assert( cutlass::platform::is_same::value || cutlass::platform::is_same::value || cutlass::platform::is_same::value, "cutlass weight type only support float, half, uint8_t, uint4b_t"); // The cutlass type for the input elements. This is needed to convert to // cutlass::half_t if necessary. using ElementType_ = typename cutlass::platform::conditional< cutlass::platform::is_same::value, cutlass::half_t, T>::type; using ElementType = ElementType_; using CutlassWeightType_ = typename cutlass::platform::conditional< cutlass::platform::is_same::value, cutlass::half_t, WeightType>::type; using CutlassWeightType = CutlassWeightType_; // We need separate config for each architecture since we will target // different tensorcore instructions. For float, we do not target TCs. using MoeArchTraits = cutlass::gemm::kernel:: MoeArchTraits; using ElementAccumulator = typename MoeArchTraits::AccType; using EpilogueOp = typename Epilogue::Op; // Finally, set up the kernel. using GemmKernel_ = typename cutlass::gemm::kernel::DefaultGemmGrouped< ElementType, cutlass::layout::RowMajor, cutlass::ComplexTransform::kNone, MoeArchTraits::ElementsPerAccessA, CutlassWeightType, typename MoeArchTraits::LayoutB, cutlass::ComplexTransform::kNone, MoeArchTraits::ElementsPerAccessB, ElementType, cutlass::layout::RowMajor, ElementAccumulator, typename MoeArchTraits::OperatorClass, arch, typename MoeArchTraits::ThreadBlockShape, typename MoeArchTraits::WarpShape, typename MoeArchTraits::InstructionShape, EpilogueOp, cutlass::gemm::threadblock::GemmBatchedIdentityThreadblockSwizzle, MoeArchTraits::Stages, cutlass::gemm::kernel::GroupScheduleMode::kDeviceOnly, typename MoeArchTraits::Operator>::GemmKernel; using GemmKernel = cutlass::gemm::kernel::MoeFCGemm; using GemmGrouped = cutlass::gemm::device::GemmGrouped; int occupancy = GemmGrouped::maximum_active_blocks(); const int threadblock_count = multi_processor_count * occupancy; if (occupancy == 0) { PADDLE_THROW(paddle::platform::errors::Fatal( "[MoE Runner] GPU lacks the shared memory resources to run GroupedGEMM " "kernel")); } typename EpilogueOp::Params epilogue_op(ElementAccumulator(1.f), ElementAccumulator(1.f)); typename GemmGrouped::Arguments args( num_experts, threadblock_count, epilogue_op, reinterpret_cast(A), reinterpret_cast(B), reinterpret_cast(weight_scales), reinterpret_cast(biases), reinterpret_cast(C), total_rows_before_expert, gemm_n, gemm_k); GemmGrouped gemm; auto can_implement = gemm.can_implement(args); if (can_implement != cutlass::Status::kSuccess) { std::string err_msg = "MoEFC kernel will fail for params. Error: " + std::string(cutlassGetStatusString(can_implement)); PADDLE_THROW(paddle::platform::errors::Fatal("[MoE Runner] " + err_msg)); } auto init_status = gemm.initialize(args); if (init_status != cutlass::Status::kSuccess) { std::string err_msg = "Failed to initialize cutlass variable batched gemm. Error: " + std::string(cutlassGetStatusString(init_status)); PADDLE_THROW(paddle::platform::errors::Fatal("[MoE Runner] " + err_msg)); } auto run_status = gemm.run(stream); if (run_status != cutlass::Status::kSuccess) { std::string err_msg = "Failed to run cutlass variable batched gemm. Error: " + std::string(cutlassGetStatusString(run_status)); PADDLE_THROW(paddle::platform::errors::Fatal("[MoE Runner] " + err_msg)); } } template void gemm_bias_act(const T* A, const T* B, const T* weight_scales, const T* biases, T* C, int64_t* total_rows_before_expert, int64_t gemm_n, int64_t gemm_k, int num_experts, int sm, int multi_processor_count, const std::string& act_type, cudaStream_t stream) { if (act_type == "gelu") { if (sm == 75) { GenericMoeGemmKernelLauncher( A, B, weight_scales, biases, C, total_rows_before_expert, gemm_n, gemm_k, num_experts, multi_processor_count, stream); } else if (sm == 80 || sm == 86) { GenericMoeGemmKernelLauncher( A, B, weight_scales, biases, C, total_rows_before_expert, gemm_n, gemm_k, num_experts, multi_processor_count, stream); } else { GenericMoeGemmKernelLauncher( A, B, weight_scales, biases, C, total_rows_before_expert, gemm_n, gemm_k, num_experts, multi_processor_count, stream); } } else { // act type is relu. if (sm == 75) { GenericMoeGemmKernelLauncher(A, B, weight_scales, biases, C, total_rows_before_expert, gemm_n, gemm_k, num_experts, multi_processor_count, stream); } else if (sm == 80 || sm == 86) { GenericMoeGemmKernelLauncher(A, B, weight_scales, biases, C, total_rows_before_expert, gemm_n, gemm_k, num_experts, multi_processor_count, stream); } else { GenericMoeGemmKernelLauncher(A, B, weight_scales, biases, C, total_rows_before_expert, gemm_n, gemm_k, num_experts, multi_processor_count, stream); } } } template void gemm(const T* A, const T* B, const T* weight_scales, T* C, int64_t* total_rows_before_expert, const int gemm_n, const int gemm_k, const int num_experts, int sm, int multi_processor_count, cudaStream_t stream) { if (sm == 75) { GenericMoeGemmKernelLauncher( A, B, weight_scales, nullptr, C, total_rows_before_expert, gemm_n, gemm_k, num_experts, multi_processor_count, stream); } else if (sm == 80 || sm == 86) { GenericMoeGemmKernelLauncher( A, B, weight_scales, nullptr, C, total_rows_before_expert, gemm_n, gemm_k, num_experts, multi_processor_count, stream); } else { GenericMoeGemmKernelLauncher( A, B, weight_scales, nullptr, C, total_rows_before_expert, gemm_n, gemm_k, num_experts, multi_processor_count, stream); } } template void finalize_moe_routing_kernelLauncher( const T* expanded_permuted_rows, T* reduced_unpermuted_output, const T* skip, const T* bias, const T* scales, const int* expanded_source_row_to_expanded_dest_row, const int* expert_for_source_row, const int num_experts, const int num_rows, const int cols, const int k, bool ec_route, cudaStream_t stream) { const int blocks = num_rows; const int threads = std::min(cols, 1024); { finalize_moe_routing_kernel<<>>( expanded_permuted_rows, reduced_unpermuted_output, skip, bias, scales, expanded_source_row_to_expanded_dest_row, expert_for_source_row, cols, num_experts, ec_route); } } template void MoeKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& gate, const DenseTensor& bmm0, const DenseTensor& bias0, const DenseTensor& bmm1, const DenseTensor& bias1, const std::string& act_type, DenseTensor* output) { const T* input_activations = x.data(); T* gating_output = const_cast(gate.data()); const T* fc1_expert_weights = bmm0.data(); const T* fc1_expert_biases = bias0.data(); const T* fc2_expert_weights = bmm1.data(); const T* fc2_expert_biases = bias1.data(); // int moe_act = static_cast(act); T* output_ = ctx.template Alloc(output); auto stream = ctx.stream(); auto input_dims = x.dims(); auto bmm0_dims = bmm0.dims(); const bool IS_FP16 = std::is_same::value; const int num_rows = input_dims[0] * input_dims[1]; const int hidden_size = input_dims[2]; const int inter_size = bmm0_dims[2]; const int num_experts = bmm0_dims[0]; const int k = input_dims[1] / 16; const int batch_size = input_dims[0]; const int max_seq_len = 128; int64_t bytes = getWorkspaceSize(num_rows, hidden_size, inter_size, num_experts, k, batch_size, max_seq_len); // Pointers int* source_rows; int* padded_source_rows; int* permuted_rows; int* permuted_experts; char* sorter_ws_; T* permuted_data; T* padded_expert_scales; int64_t* total_rows_before_expert; T* sorted_softmax_output; T* attr_mask; T* fc1_result; phi::DenseTensor ws_ptr_tensor = phi::Empty(ctx, {bytes}); int8_t* ws_ptr = ws_ptr_tensor.data(); const int buf_size = AlignTo16(num_experts * batch_size * k * hidden_size); const int padded_experts = AlignTo16(num_experts); const int num_moe_inputs = AlignTo16(num_experts * num_rows); // padded_num_moe_inputs for topk sort int padded_num_moe_inputs = num_experts * batch_size * max_seq_len; source_rows = reinterpret_cast(ws_ptr); padded_source_rows = source_rows + num_moe_inputs; permuted_rows = padded_source_rows + padded_num_moe_inputs; permuted_experts = permuted_rows + padded_num_moe_inputs; permuted_data = reinterpret_cast(permuted_experts + num_experts * k); padded_expert_scales = reinterpret_cast(permuted_data + buf_size); total_rows_before_expert = reinterpret_cast(padded_expert_scales + padded_num_moe_inputs); sorted_softmax_output = reinterpret_cast(total_rows_before_expert + padded_experts); attr_mask = reinterpret_cast(sorted_softmax_output + padded_num_moe_inputs); fc1_result = reinterpret_cast(attr_mask + num_moe_inputs); phi::DenseTensor expert_for_source_row_tensor = phi::Empty(ctx, {num_experts, num_rows}); int* expert_for_source_row = expert_for_source_row_tensor.data(); phi::DenseTensor expanded_source_row_to_expanded_dest_row_tensor = phi::Empty(ctx, {num_experts, num_rows}); int* expanded_source_row_to_expanded_dest_row = expanded_source_row_to_expanded_dest_row_tensor.data(); phi::DenseTensor expert_scales_tensor = phi::Empty(ctx, {num_experts, num_rows}); T* expert_scales = expert_scales_tensor.data(); phi::DenseTensor fc2_output_tensor = phi::Empty(ctx, {num_experts * batch_size * k, hidden_size}); T* fc2_result = fc2_output_tensor.data(); phi::DenseTensor input_lengths_tensor = phi::Empty(ctx, {batch_size}); int* input_lengths = input_lengths_tensor.data(); funcs::SetConstant set_len; set_len(ctx, &input_lengths_tensor, static_cast(max_seq_len)); int sm = getSMVersion(); int multi_processor_count = phi::backends::gpu::GetGPUMultiProcessors( phi::backends::gpu::GetCurrentDeviceId()); InitExpertChoiceRouteKernelLauncher( expert_for_source_row, source_rows, expanded_source_row_to_expanded_dest_row, total_rows_before_expert, attr_mask, num_experts, num_rows, k, batch_size, ctx.stream()); if (IS_FP16) { invokeMaskedSoftMax<__half>(reinterpret_cast<__half*>(gating_output), reinterpret_cast(gating_output), reinterpret_cast(attr_mask), /*batch_size=*/num_rows, /*seq_len=*/num_experts, ctx.stream()); } else { invokeMaskedSoftMax(reinterpret_cast(gating_output), reinterpret_cast(gating_output), reinterpret_cast(attr_mask), /*batch_size=*/num_rows, /*seq_len=*/num_experts, ctx.stream()); } InvokeTransposeAxis01( expert_scales, gating_output, num_rows, num_experts, 1, ctx.stream()); int padded_max_seq_len = max_seq_len <= 128 ? 128 : 256; InvokePadding(padded_expert_scales, padded_source_rows, expert_scales, source_rows, input_lengths, num_rows, batch_size, padded_max_seq_len, num_experts, ctx.stream()); if (IS_FP16) { InvokeGeneralTopKPairSort<__half>( reinterpret_cast<__half*>(sorted_softmax_output), permuted_rows, reinterpret_cast<__half*>(padded_expert_scales), padded_source_rows, num_experts * batch_size, padded_max_seq_len, ctx.stream()); } else { InvokeGeneralTopKPairSort( reinterpret_cast(sorted_softmax_output), permuted_rows, reinterpret_cast(padded_expert_scales), padded_source_rows, num_experts * batch_size, padded_max_seq_len, ctx.stream()); } InitMoeRoutingKernelLauncher(input_activations, permuted_data, permuted_rows, expanded_source_row_to_expanded_dest_row, num_experts, num_rows, num_rows, hidden_size, k, batch_size, max_seq_len, true, ctx.stream()); const T* fc1_scales = nullptr; const T* fc2_scales = nullptr; if (IS_FP16) { gemm_bias_act(reinterpret_cast(permuted_data), reinterpret_cast(fc1_expert_weights), reinterpret_cast(fc1_scales), reinterpret_cast(fc1_expert_biases), reinterpret_cast<__half*>(fc1_result), total_rows_before_expert, inter_size, hidden_size, num_experts, sm, multi_processor_count, act_type, ctx.stream()); gemm(reinterpret_cast(fc1_result), reinterpret_cast(fc2_expert_weights), reinterpret_cast(fc2_scales), reinterpret_cast<__half*>(fc2_result), total_rows_before_expert, hidden_size, inter_size, num_experts, sm, multi_processor_count, ctx.stream()); } else { gemm_bias_act(reinterpret_cast(permuted_data), reinterpret_cast(fc1_expert_weights), reinterpret_cast(fc1_scales), reinterpret_cast(fc1_expert_biases), reinterpret_cast(fc1_result), total_rows_before_expert, inter_size, hidden_size, num_experts, sm, multi_processor_count, act_type, ctx.stream()); gemm(reinterpret_cast(fc1_result), reinterpret_cast(fc2_expert_weights), reinterpret_cast(fc2_scales), reinterpret_cast(fc2_result), total_rows_before_expert, hidden_size, inter_size, num_experts, sm, multi_processor_count, ctx.stream()); } finalize_moe_routing_kernelLauncher(fc2_result, output_, input_activations, fc2_expert_biases, expert_scales, expanded_source_row_to_expanded_dest_row, expert_for_source_row, num_experts, num_rows, hidden_size, k, true, ctx.stream()); } } // namespace fusion } // namespace phi PD_REGISTER_KERNEL( moe, GPU, ALL_LAYOUT, phi::fusion::MoeKernel, float, phi::dtype::float16) {}