// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/infrt/backends/tensorrt/trt_engine.h" #include #include #include "glog/logging.h" #include "paddle/phi/backends/dynload/tensorrt.h" #include "paddle/phi/backends/gpu/gpu_info.h" #include "paddle/phi/core/ddim.h" namespace infrt { namespace backends { namespace tensorrt { // The following two API are implemented in TensorRT's header file, cannot load // from the dynamic library. So create our own implementation and directly // trigger the method from the dynamic library. static nvinfer1::IBuilder* createInferBuilder( nvinfer1::ILogger& logger) { // NOLINT return static_cast( phi::dynload::createInferBuilder_INTERNAL(&logger, NV_TENSORRT_VERSION)); } static nvinfer1::IRuntime* createInferRuntime( nvinfer1::ILogger& logger) { // NOLINT return static_cast( phi::dynload::createInferRuntime_INTERNAL(&logger, NV_TENSORRT_VERSION)); } TRTEngine::TRTEngine(int device_id) : device_id_(device_id) { FreshDeviceId(); logger_.reset(new TrtLogger()); builder_.reset(createInferBuilder(logger_->GetTrtLogger())); phi::dynload::initLibNvInferPlugins(&logger_->GetTrtLogger(), ""); } nvinfer1::IBuilder* TRTEngine::GetTrtBuilder() { CHECK_NOTNULL(builder_); return builder_.get(); } void TRTEngine::Build(TrtUniquePtr network, const BuildOptions& build_options) { FreshDeviceId(); ModelToBuildEnv(std::move(network), build_options); CHECK_NOTNULL(engine_); } bool TRTEngine::ModelToBuildEnv( TrtUniquePtr network, const BuildOptions& build) { CHECK_NOTNULL(builder_); std::swap(network, network_); CHECK_NOTNULL(network_); // ModelToNetwork(network_, logger); NetworkToEngine(build); return true; } bool TRTEngine::NetworkToEngine(const BuildOptions& build) { TrtUniquePtr config{builder_->createBuilderConfig()}; CHECK_NOTNULL(config); CHECK(SetupNetworkAndConfig(build, *network_, *config)); #if IS_TRT_VERSION_LT(8000) engine_.reset(builder_->buildEngineWithConfig(*network_, *config)); #else serialized_engine_.reset( builder_->buildSerializedNetwork(*network_, *config)); CHECK_NOTNULL(serialized_engine_); TrtUniquePtr runtime{createInferRuntime(logger_->GetTrtLogger())}; CHECK_NOTNULL(runtime); engine_.reset(runtime->deserializeCudaEngine(serialized_engine_->data(), serialized_engine_->size())); CHECK_NOTNULL(engine_); #endif return true; } bool TRTEngine::SetupNetworkAndConfig(const BuildOptions& build, INetworkDefinition& network, IBuilderConfig& config) { builder_->setMaxBatchSize(build.max_batch); // TODO(wilber): handle one engine - multi execution context case. IOptimizationProfile* profile{nullptr}; if (!build.shapes.empty()) { profile = builder_->createOptimizationProfile(); CHECK_NOTNULL(profile); } // Set formats and data types of inputs for (int32_t i = 0; i < network.getNbInputs(); ++i) { auto* input = network.getInput(i); if (!build.input_formats.empty()) { input->setType(build.input_formats[i].first); input->setAllowedFormats(build.input_formats[i].second); } else { switch (input->getType()) { case DataType::kINT32: case DataType::kBOOL: case DataType::kHALF: // Leave these as is. break; case DataType::kFLOAT: case DataType::kINT8: // User did not specify a floating-point format. Default to kFLOAT. input->setType(DataType::kFLOAT); break; } input->setAllowedFormats(1U << static_cast(TensorFormat::kLINEAR)); } if (profile) { Dims dims = input->getDimensions(); // TODO(wilber): shape tensor. const bool is_dynamic_input = std::any_of( dims.d, dims.d + dims.nbDims, [](int dim) { return dim == -1; }); if (is_dynamic_input) { is_dynamic_shape_ = true; auto shape = build.shapes.find(input->getName()); // If no shape is provided if (shape == build.shapes.end()) { // TODO(wilber): add infomation. CHECK(false); } LOG(INFO) << "Run Paddle-TRT Dynamic Shape mode."; std::vector profile_dims{}; profile_dims = shape->second[static_cast(OptProfileSelector::kMIN)]; CHECK(profile->setDimensions(input->getName(), OptProfileSelector::kMIN, VecToDims(profile_dims))); profile_dims = shape->second[static_cast(OptProfileSelector::kOPT)]; CHECK(profile->setDimensions(input->getName(), OptProfileSelector::kOPT, VecToDims(profile_dims))); profile_dims = shape->second[static_cast(OptProfileSelector::kMAX)]; CHECK(profile->setDimensions(input->getName(), OptProfileSelector::kMAX, VecToDims(profile_dims))); } } } if (profile && is_dynamic_shape_) { CHECK(profile->isValid()); // Required optimization profile is invalid CHECK_NE(config.addOptimizationProfile(profile), -1); } // Set formats and data types of outputs for (int32_t i = 0, n = network.getNbOutputs(); i < n; i++) { auto* output = network.getOutput(i); if (!build.output_formats.empty()) { // int outputFormatIndex = broadcastOutputFormats ? 0 : i; output->setType(build.output_formats[i].first); output->setAllowedFormats(build.output_formats[i].second); } else { output->setAllowedFormats(1U << static_cast(TensorFormat::kLINEAR)); } } config.setMaxWorkspaceSize(static_cast(build.workspace) << 20); if (build.fp16) { config.setFlag(BuilderFlag::kFP16); bool support_fp16 = builder_->platformHasFastFp16(); if (support_fp16) { LOG(INFO) << "Run INFRT-TRT FP16 mode"; } else { LOG(INFO) << "You specify FP16 mode, but the hardware do not support " "FP16 speed up, use FP32 instead."; } } if (build.tf32) { config.setFlag(BuilderFlag::kTF32); bool support_tf32 = builder_->platformHasTf32(); if (support_tf32) { LOG(INFO) << "Run INFRT-TRT TF32 mode"; } else { LOG(INFO) << "You specify TF32 mode, but the hardware do not support " "TF32 speed up, use FP32 instead."; } } // TODO(wilber): other precision. // TODO(wilber): precision config. switch (build.precision_constraints) { case PrecisionConstraints::kNONE: // It's the default for TensorRT. break; case PrecisionConstraints::kOBEY: config.setFlag(BuilderFlag::kOBEY_PRECISION_CONSTRAINTS); break; case PrecisionConstraints::kPREFER: config.setFlag(BuilderFlag::kPREFER_PRECISION_CONSTRAINTS); break; } // TODO(TRT): DLA config. // TODO(TRT): int8 config. // TODO(TRT): support int8 if (build.int8) { assert(false); config.setFlag(BuilderFlag::kINT8); bool support_int8 = builder_->platformHasFastInt8(); if (support_int8) { LOG(INFO) << "Run INFRT-TRT FP16 mode"; } } // TODO(TRT): calib config. // TODO(TRT): sparse config. return true; } bool TRTEngine::SetUpInference( const InferenceOptions& inference, const std::unordered_map& inputs, std::unordered_map* outputs) { // TODO(wilber): now only create one exec_context FreshDeviceId(); CHECK(engine_ != nullptr); nvinfer1::IExecutionContext* ec = engine_->createExecutionContext(); CHECK(ec != nullptr); contexts_.emplace_back(ec); bindings_.emplace_back(new Bindings()); for (const auto& it : inputs) { const int bind_index = engine_->getBindingIndex(it.first.c_str()); bindings_.front()->AddBinding( bind_index, it.first, true, it.second, nvinfer1::DataType::kFLOAT); } for (auto& it : *outputs) { const int bind_index = engine_->getBindingIndex(it.first.c_str()); bindings_.front()->AddBinding( bind_index, it.first, false, it.second, nvinfer1::DataType::kFLOAT); } return true; } void TRTEngine::Run(const phi::GPUContext& ctx) { if (is_dynamic_shape_) { DynamicRun(ctx); } else { StaticRun(ctx); } } void TRTEngine::StaticRun(const phi::GPUContext& ctx) { const int num_bindings = engine_->getNbBindings(); std::vector buffers(num_bindings, nullptr); int runtime_batch = -1; auto input_binds = bindings_.front()->GetInputBindings(); for (auto bind : input_binds) { const int bind_index = engine_->getBindingIndex(bind.name.c_str()); buffers[bind_index] = const_cast(static_cast(bind.buffer->data())); if (runtime_batch != -1) { CHECK_EQ(runtime_batch, phi::vectorize(bind.buffer->dims())[0]); } runtime_batch = bind.buffer->dims()[0]; } auto output_binds = bindings_.front()->GetOutputBindings(); for (auto bind : output_binds) { const int bind_index = engine_->getBindingIndex(bind.name.c_str()); std::vector ddim; auto dims = engine_->getBindingDimensions(bind_index); ddim.push_back(runtime_batch); for (int i = 0; i < dims.nbDims; ++i) { ddim.push_back(dims.d[i]); } bind.buffer->Resize(phi::make_ddim(ddim)); ctx.Alloc(bind.buffer, sizeof(float) * bind.buffer->numel()); buffers[bind_index] = static_cast(bind.buffer->data()); } contexts_.front()->enqueue( runtime_batch, buffers.data(), ctx.stream(), nullptr); } void TRTEngine::DynamicRun(const phi::GPUContext& ctx) { const int num_bindings = engine_->getNbBindings(); std::vector buffers(num_bindings, nullptr); auto input_binds = bindings_.front()->GetInputBindings(); for (auto bind : input_binds) { const int bind_index = engine_->getBindingIndex(bind.name.c_str()); buffers[bind_index] = const_cast(static_cast(bind.buffer->data())); nvinfer1::Dims trt_dims; trt_dims.nbDims = bind.buffer->dims().size(); for (int i = 0; i < trt_dims.nbDims; ++i) { trt_dims.d[i] = bind.buffer->dims()[i]; } contexts_.front()->setBindingDimensions(bind_index, trt_dims); } CHECK(contexts_.front()->allInputDimensionsSpecified()); auto output_binds = bindings_.front()->GetOutputBindings(); for (auto bind : output_binds) { const int bind_index = engine_->getBindingIndex(bind.name.c_str()); auto dims = contexts_.front()->getBindingDimensions(bind_index); std::vector ddim(dims.nbDims); for (int i = 0; i < dims.nbDims; ++i) { ddim[i] = dims.d[i]; } bind.buffer->Resize(phi::make_ddim(ddim)); ctx.Alloc(bind.buffer, sizeof(float) * bind.buffer->numel()); buffers[bind_index] = static_cast(bind.buffer->data()); } contexts_.front()->enqueueV2(buffers.data(), ctx.stream(), nullptr); } void TRTEngine::FreshDeviceId() { int count; cudaGetDeviceCount(&count); CHECK_LT(device_id_, count); phi::backends::gpu::SetDeviceId(device_id_); } void TRTEngine::GetEngineInfo() { #if IS_TRT_VERSION_GE(8200) LOG(INFO) << "====== engine info ======"; std::unique_ptr infer_inspector( engine_->createEngineInspector()); infer_inspector->setExecutionContext(contexts_.front().get()); LOG(INFO) << infer_inspector->getEngineInformation( nvinfer1::LayerInformationFormat::kONELINE); LOG(INFO) << "====== engine info end ======"; #else LOG(INFO) << "Inspector needs TensorRT version 8.2 and after."; #endif } } // namespace tensorrt } // namespace backends } // namespace infrt