/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/roi_align_op.h" #include #include "paddle/fluid/framework/op_version_registry.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; class ROIAlignOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, platform::errors::NotFound("Input(X) of ROIAlignOp " "is not found.")); PADDLE_ENFORCE_EQ(ctx->HasInput("ROIs"), true, platform::errors::NotFound("Input(ROIs) of ROIAlignOp " "is not found.")); PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true, platform::errors::NotFound("Output(Out) of ROIAlignOp " "is not found.")); auto input_dims = ctx->GetInputDim("X"); auto rois_dims = ctx->GetInputDim("ROIs"); if (ctx->HasInput("RoisNum")) { auto rois_num_dims = ctx->GetInputDim("RoisNum"); PADDLE_ENFORCE_EQ( rois_num_dims.size(), 1, platform::errors::InvalidArgument("The size of RoisNum should be 1" ", but received size = %d", rois_num_dims.size())); } PADDLE_ENFORCE_EQ( input_dims.size(), 4, platform::errors::InvalidArgument( "The format of Input(X) in" "RoIAlignOp is NCHW. And the rank of input must be 4. " "But received rank = %d", input_dims.size())); PADDLE_ENFORCE_EQ(rois_dims.size(), 2, platform::errors::InvalidArgument( "The rank of Input(ROIs) " "in RoIAlignOp should be 2. " "But the rank of RoIs is %d", rois_dims.size())); if (ctx->IsRuntime()) { PADDLE_ENFORCE_EQ(rois_dims[1], 4, platform::errors::InvalidArgument( "The second dimension " "of Input(ROIs) should be 4. But received the " "dimension = %d", rois_dims[1])); } int pooled_height = ctx->Attrs().Get("pooled_height"); int pooled_width = ctx->Attrs().Get("pooled_width"); float spatial_scale = ctx->Attrs().Get("spatial_scale"); PADDLE_ENFORCE_GT(pooled_height, 0, platform::errors::InvalidArgument( "The 'pooled_height' attribute in RoIAlignOp is " "invalid. The height must be greater than 0. But " "received 'pooled_height' = %d", pooled_height)); PADDLE_ENFORCE_GT(pooled_width, 0, platform::errors::InvalidArgument( "The 'pooled_width' attribute in RoIAlignOp is " "invalid. The width must be greater than 0. But " "received 'pooled_width' = %d", pooled_width)); PADDLE_ENFORCE_GT(spatial_scale, 0.0f, platform::errors::InvalidArgument( "The 'spatial_scale' attribute in RoIAlignOp is " "invalid. The scale must be greater than 0. But " "received 'spatial_scale' = %f", spatial_scale)); auto out_dims = input_dims; out_dims[0] = rois_dims[0]; out_dims[1] = input_dims[1]; out_dims[2] = pooled_height; out_dims[3] = pooled_width; ctx->SetOutputDim("Out", out_dims); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.device_context()); } }; class ROIAlignGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE_EQ( ctx->HasInput(framework::GradVarName("Out")), true, platform::errors::NotFound("The GRAD@Out of ROIAlignGradOp " "is not found.")); PADDLE_ENFORCE_EQ(ctx->HasOutputs(framework::GradVarName("X")), true, platform::errors::NotFound("The GRAD@X of ROIAlignGradOp " "is not found.")); ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X")); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( OperatorWithKernel::IndicateVarDataType(ctx, "ROIs"), ctx.device_context()); } }; class ROIAlignOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor), " "The input of ROIAlignOp. The data type is float32 or float64." "The format of input tensor is NCHW. Where N is batch size, " "C is the number of input channels, " "H is the height of the feature, and " "W is the width of the feature."); AddInput("ROIs", "(LoDTensor), " "ROIs (Regions of Interest) to pool over. " "should be a 2-D LoDTensor of shape (num_rois, 4)" "given as [[x1, y1, x2, y2], ...]. " "(x1, y1) is the top left coordinates, and " "(x2, y2) is the bottom right coordinates."); AddInput("RoisNum", "(Tensor), " "The number of RoIs in each image.") .AsDispensable(); AddOutput("Out", "(Tensor), " "The output of ROIAlignOp is a 4-D tensor with shape " "(num_rois, channels, pooled_h, pooled_w). The data type is " "float32 or float64."); AddAttr("spatial_scale", "(float, default 1.0), " "Multiplicative spatial scale factor " "to translate ROI coords from their input scale " "to the scale used when pooling.") .SetDefault(1.0); AddAttr("pooled_height", "(int, default 1), " "The pooled output height.") .SetDefault(1); AddAttr("pooled_width", "(int, default 1), " "The pooled output width.") .SetDefault(1); AddAttr("sampling_ratio", "(int,default -1)," "number of sampling points in the interpolation grid" "If <=0, then grid points are adaptive to roi_width " "and pooled_w, likewise for height") .SetDefault(-1); AddComment(R"DOC( **RoIAlign Operator** Region of interest align (also known as RoI align) is to perform bilinear interpolation on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7) Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height. Location remains the origin result. In each ROI bin, the value of the four regularly sampled locations are computed directly through bilinear interpolation. The output is the mean of four locations. Thus avoid the misaligned problem. )DOC"); } }; template class ROIAlignGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("roi_align_grad"); op->SetInput("X", this->Input("X")); op->SetInput("ROIs", this->Input("ROIs")); op->SetInput("RoisNum", this->Input("RoisNum")); op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); op->SetAttrMap(this->Attrs()); } }; DECLARE_NO_NEED_BUFFER_VARS_INFERER(RoiAlignGradNoNeedBufVarsInferer, "X"); } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(roi_align, ops::ROIAlignOp, ops::ROIAlignOpMaker, ops::ROIAlignGradMaker, ops::ROIAlignGradMaker); REGISTER_OPERATOR(roi_align_grad, ops::ROIAlignGradOp, ops::RoiAlignGradNoNeedBufVarsInferer); REGISTER_OP_CPU_KERNEL( roi_align, ops::CPUROIAlignOpKernel, ops::CPUROIAlignOpKernel, ops::CPUROIAlignOpKernel); REGISTER_OP_CPU_KERNEL( roi_align_grad, ops::CPUROIAlignGradOpKernel, ops::CPUROIAlignGradOpKernel, ops::CPUROIAlignGradOpKernel); REGISTER_OP_VERSION(roi_align) .AddCheckpoint( R"ROC( Upgrade roi_align add a new input [RoisNum])ROC", paddle::framework::compatible::OpVersionDesc().NewInput( "RoisNum", "The number of RoIs in each image. RoisNum is dispensable."));