# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest import paddle.fluid as fluid from paddle.fluid import compiler, Program, program_guard import paddle paddle.enable_static() class TestBroadcastToError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): x1 = fluid.create_lod_tensor(np.array([[-1]]), [[1]], fluid.CPUPlace()) shape = [2, 2] self.assertRaises(TypeError, paddle.tensor.broadcast_to, x1, shape) x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8") self.assertRaises(TypeError, paddle.tensor.broadcast_to, x2, shape) x3 = fluid.layers.data(name='x3', shape=[4], dtype="bool") x3.stop_gradient = False self.assertRaises(ValueError, paddle.tensor.broadcast_to, x3, shape) # Test python API class TestBroadcastToAPI(unittest.TestCase): def test_api(self): input = np.random.random([12, 14]).astype("float32") x = fluid.layers.data(name='x', shape=[12, 14], append_batch_size=False, dtype="float32") positive_2 = fluid.layers.fill_constant([1], "int32", 12) expand_shape = fluid.layers.data(name="expand_shape", shape=[2], append_batch_size=False, dtype="int32") out_1 = paddle.broadcast_to(x, shape=[12, 14]) out_2 = paddle.broadcast_to(x, shape=[positive_2, 14]) out_3 = paddle.broadcast_to(x, shape=expand_shape) g0 = fluid.backward.calc_gradient(out_2, x) exe = fluid.Executor(place=fluid.CPUPlace()) res_1, res_2, res_3 = exe.run(fluid.default_main_program(), feed={ "x": input, "expand_shape": np.array([12, 14]).astype("int32") }, fetch_list=[out_1, out_2, out_3]) assert np.array_equal(res_1, np.tile(input, (1, 1))) assert np.array_equal(res_2, np.tile(input, (1, 1))) assert np.array_equal(res_3, np.tile(input, (1, 1))) if __name__ == "__main__": unittest.main()