// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/infermeta/unary.h" #include "paddle/phi/kernels/empty_kernel.h" namespace phi { template void SumRawKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, bool reduce_all, DataType out_dtype, DenseTensor* out); template void MeanRawKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, bool reduce_all, DenseTensor* out); template void ProdRawKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, bool reduce_all, DenseTensor* out); template void MaxRawKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, bool reduce_all, DenseTensor* out); template void MinRawKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, bool reduce_all, DenseTensor* out); template void AnyRawKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, bool reduce_all, DenseTensor* out); template void AllRawKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, bool reduce_all, DenseTensor* out); template void SumKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, DataType out_dtype, bool keep_dim, DenseTensor* out); template void MeanKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, DenseTensor* out); template void ProdKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, DenseTensor* out); template void MaxKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, DenseTensor* out); template void MinKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, DenseTensor* out); template void AnyKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, DenseTensor* out); template void AllKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, DenseTensor* out); template DenseTensor Mean(const Context& dev_ctx, const DenseTensor& x, const std::vector& axis, bool keep_dim) { DenseTensor dense_out; MetaTensor meta_out(&dense_out); SumRawInferMeta(x, axis, keep_dim, false, x.dtype(), &meta_out); MeanKernel(dev_ctx, x, axis, keep_dim, &dense_out); return dense_out; } template DenseTensor Sum(const Context& dev_ctx, const DenseTensor& x, const std::vector& axis, DataType dtype, bool keep_dim) { DenseTensor dense_out; MetaTensor meta_out(&dense_out); SumInferMeta(x, axis, dtype, keep_dim, &meta_out); SumKernel(dev_ctx, x, axis, dtype, keep_dim, &dense_out); return dense_out; } } // namespace phi