/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/operators/sequence_expand_op.h" #include "paddle/fluid/platform/cuda_helper.h" namespace paddle { namespace operators { using LoDTensor = framework::LoDTensor; template __global__ void sequence_expand_kernel(const T* x_data, const size_t* x_lod, const size_t* ref_lod, const size_t* offset, const size_t lod_size, /* default=1, the instance length*/ const int x_item_length, T* out_data) { int bid = blockIdx.x; if (bid >= lod_size - 1) return; int x_item_count = x_lod[bid + 1] - x_lod[bid]; int repeats = ref_lod[bid + 1] - ref_lod[bid]; int out_offset = static_cast(offset[bid]); int x_offset = x_lod[bid]; for (int tid_z = threadIdx.z; tid_z < repeats; tid_z += blockDim.z) { for (int tid_y = threadIdx.y; tid_y < x_item_count; tid_y += blockDim.y) { for (int tid_x = threadIdx.x; tid_x < x_item_length; tid_x += blockDim.x) { out_data[(out_offset + tid_z * x_item_count + tid_y) * x_item_length + tid_x] = x_data[(x_offset + tid_y) * x_item_length + tid_x]; } } } } template __global__ void sequence_expand_grad_kernel( const T* dout_data, const size_t* ref_lod, const size_t* dx_lod, const size_t* offset, const size_t lod_size, /* default=1, the instance length*/ const int x_item_length, T* dx_data) { int bid = blockIdx.x; if (bid >= lod_size - 1) return; int x_item_count = dx_lod[bid + 1] - dx_lod[bid]; int repeats = ref_lod[bid + 1] - ref_lod[bid]; int out_offset = static_cast(offset[bid]); int x_offset = dx_lod[bid]; for (int tid_z = threadIdx.z; tid_z < repeats; tid_z += blockDim.z) { for (int tid_y = threadIdx.y; tid_y < x_item_count; tid_y += blockDim.y) { for (int tid_x = threadIdx.x; tid_x < x_item_length; tid_x += blockDim.x) { platform::CudaAtomicAdd( &dx_data[(x_offset + tid_y) * x_item_length + tid_x], dout_data[(out_offset + tid_z * x_item_count + tid_y) * x_item_length + tid_x]); } } } } void GetOutputOffset(const framework::Vector& x_lod, const framework::Vector& ref_lod, framework::Vector* out_offset) { size_t offset = 0; int lod_size = static_cast(x_lod.size()); for (int i = 0; i < static_cast(x_lod.size()); ++i) { (*out_offset)[i] = offset; if (i < lod_size - 1) { offset += (ref_lod[i + 1] - ref_lod[i]) * (x_lod[i + 1] - x_lod[i]); } } } template struct SequenceExpandFunctor { void operator()( const platform::CUDADeviceContext& context, const LoDTensor& x, const framework::Vector& x_lod, /*expand source lod*/ const framework::Vector& ref_lod, /*expand referenced lod*/ LoDTensor* out) { int x_item_length = x.numel() / x.dims()[0]; framework::Vector out_offset(x_lod.size()); GetOutputOffset(x_lod, ref_lod, &out_offset); int thread_x = std::min(32, std::max(static_cast(ref_lod.size()), 16)); int thread_y = 16; int thread_z = 1024 / thread_x / thread_y; int block_x = static_cast(ref_lod.size()); dim3 block_size(thread_x, thread_y, thread_z); dim3 grid_size(block_x, 1); sequence_expand_kernel<<>>( x.data(), x_lod.CUDAData(context.GetPlace()), ref_lod.CUDAData(context.GetPlace()), out_offset.CUDAData(context.GetPlace()), x_lod.size(), x_item_length, out->mutable_data(context.GetPlace())); } }; template struct SequenceExpandGradFunctor { void operator()(const platform::CUDADeviceContext& context, const LoDTensor& dout, const framework::Vector& x_lod, /*expand source lod*/ const framework::Vector& ref_lod, /*expand based lod*/ LoDTensor* dx) { int x_item_length = framework::product(dx->dims()) / dx->dims()[0]; framework::Vector out_offset(x_lod.size()); GetOutputOffset(x_lod, ref_lod, &out_offset); int thread_x = std::min(32, std::max(static_cast(ref_lod.size()), 16)); int thread_y = 16; int thread_z = 1024 / thread_x / thread_y; int block_x = static_cast(ref_lod.size()); dim3 block_size(thread_x, thread_y, thread_z); dim3 grid_size(block_x, 1); sequence_expand_grad_kernel<<>>( dout.data(), ref_lod.CUDAData(context.GetPlace()), x_lod.CUDAData(context.GetPlace()), out_offset.CUDAData(context.GetPlace()), ref_lod.size(), x_item_length, dx->mutable_data(context.GetPlace())); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( sequence_expand, ops::SequenceExpandKernel, ops::SequenceExpandKernel, ops::SequenceExpandKernel, ops::SequenceExpandKernel); REGISTER_OP_CUDA_KERNEL( sequence_expand_grad, ops::SequenceExpandGradKernel, ops::SequenceExpandGradKernel, ops::SequenceExpandGradKernel, ops::SequenceExpandGradKernel);