# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import six import numpy as np import warnings from paddle import framework import paddle from paddle.fluid import core from paddle.fluid.dygraph.parallel import _split_tensors, sync_params_buffers, build_groups from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph from collections import OrderedDict from .log_util import logger __all__ = [] def _apply_collective_grads(parameters, comm_group): grad_var_set = set() grad_vars = [] sparse_grad_vars = [] for param in parameters: if param.trainable and (param._grad_ivar() is not None): g_var = param._grad_ivar() assert not g_var._is_sparse( ), "Now, it doesn't support sparse parameters" grad_vars.append(g_var) assert g_var not in grad_var_set grad_var_set.add(g_var) coalesced_grads_and_vars = build_groups(grad_vars, 128 * 1024 * 1024) nranks = paddle.distributed.get_world_size( ) if comm_group is None else comm_group.nranks for coalesced_grad, _, _ in coalesced_grads_and_vars: # need to div nranks div_factor = paddle.to_tensor(nranks, dtype=coalesced_grad.dtype) paddle.fluid.framework._dygraph_tracer().trace_op( type="elementwise_div", inputs={ 'X': coalesced_grad, 'Y': div_factor }, outputs={'Out': coalesced_grad}, attrs={'axis': -1}) paddle.distributed.all_reduce(coalesced_grad, group=comm_group) _split_tensors(coalesced_grads_and_vars) def _apply_collective_grads_eager(parameters, comm_group): grad_var_set = set() grad_vars = [] for param in parameters: if param.trainable and (param._grad_ivar() is not None): g_var = param._grad_ivar() assert not g_var.is_sparse( ), "Now, it doesn't support sparse parameters" grad_vars.append(g_var) assert g_var not in grad_var_set grad_var_set.add(g_var) coalesced_grads_and_vars = build_groups(grad_vars, 128 * 1024 * 1024) nranks = paddle.distributed.get_world_size( ) if comm_group is None else comm_group.nranks for coalesced_grad, _, _ in coalesced_grads_and_vars: # need to div nranks coalesced_grad.scale_(1.0 / nranks) paddle.distributed.all_reduce(coalesced_grad, group=comm_group) _split_tensors(coalesced_grads_and_vars) def _broadcast_data_help(data, shape, dtype, hcg): model_parallel_group = hcg.get_model_parallel_group() src_rank = hcg.get_model_parallel_group_src_rank() mp_rank = hcg.get_model_parallel_rank() shape_gpu = paddle.to_tensor(shape, dtype="int32") paddle.distributed.broadcast(shape_gpu, src=src_rank, group=model_parallel_group, use_calc_stream=True) if mp_rank != 0: input_data = paddle.zeros(shape_gpu, dtype=dtype) else: input_data = data paddle.distributed.broadcast(input_data, src=src_rank, group=model_parallel_group, use_calc_stream=True) def broadcast_input_data(hcg, *inputs, **kwargs): cur_device = paddle.get_device() for v in inputs: if isinstance(v, (core.VarBase, core.eager.Tensor)): with framework.no_grad(): v = v.cuda() if "gpu" in cur_device else v _broadcast_data_help(v, v.shape, v.dtype, hcg) else: logger.error("it doesn't support data type {}".format(type(v))) for k, v in kwargs.items(): if isinstance(v, (core.VarBase, core.eager.Tensor)): with framework.no_grad(): v = v.cuda() if "gpu" in cur_device else v _broadcast_data_help(v, v.shape, v.dtype, hcg) kwargs[k] = v else: logger.error("it doesn't support data type {}".format(type(v))) return inputs, kwargs def broadcast_mp_parameters(model, hcg): model_parallel_group = hcg.get_model_parallel_group() src_rank = hcg.get_model_parallel_group_src_rank() sync_params_buffers(model, model_parallel_group, src_rank, is_model_parallel=True) def broadcast_dp_parameters(model, hcg): data_parallel_group = hcg.get_data_parallel_group() src_rank = hcg.get_data_parallel_group_src_rank() sync_params_buffers(model, data_parallel_group, src_rank, is_model_parallel=False) def fused_allreduce_gradients(parameter_list, hcg): data_parallel_group = None if hcg is None else hcg.get_data_parallel_group() logger.debug("dp start fuse allreduce gradients") apply_func = _apply_collective_grads_eager if in_dygraph_mode( ) else _apply_collective_grads with framework.no_grad(): apply_func(parameter_list, data_parallel_group) def sharding_reduce_gradients(parameter_list, hcg): # TODO allreduce --> reduce # TODO merge grad / nrank with dp logger.debug("sharding start gradients sync") with framework.no_grad(): sharding_nrank = hcg.get_sharding_parallel_group().nranks for param in parameter_list: if param.trainable and (param._grad_ivar() is not None): if in_dygraph_mode(): param.grad.scale_(1.0 / sharding_nrank) paddle.distributed.all_reduce( param.grad, group=hcg.get_sharding_parallel_group(), use_calc_stream=True) elif _in_legacy_dygraph(): g_var = param._grad_ivar() # need use trace_op to allreduce # paddle.distributed.all_reduce( # g_var, group=hcg.get_sharding_parallel_group(), use_calc_stream=True) paddle.fluid.framework._dygraph_tracer().trace_op( type="c_allreduce_sum", inputs={'X': g_var}, outputs={'Out': g_var}, attrs={ 'ring_id': hcg.get_sharding_parallel_group().id, 'use_calc_stream': True }) # grad / sharding_rank div_factor = paddle.to_tensor(sharding_nrank, dtype=g_var.dtype) paddle.fluid.framework._dygraph_tracer().trace_op( type="elementwise_div", inputs={ 'X': g_var, 'Y': div_factor }, outputs={'Out': g_var}, attrs={'axis': -1}) def broadcast_sharding_parameters(model, hcg): # TODO TO save memory, use un-fused broadcast to avoid potentional OOM logger.debug("sharding start init parameters sync") sharding_parallel_group = hcg.get_sharding_parallel_group() src_rank = hcg.get_sharding_parallel_group_src_rank() sync_params_buffers(model, sharding_parallel_group, src_rank, is_model_parallel=False)