# Copyright (c) 2016 Baidu, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import itertools import random import numpy from paddle.trainer.config_parser import parse_config from paddle.trainer.config_parser import logger import py_paddle.swig_paddle as api from py_paddle import DataProviderConverter import matplotlib.pyplot as plt def plot2DScatter(data, outputfile): # Generate some test data x = data[:, 0] y = data[:, 1] print "The mean vector is %s" % numpy.mean(data, 0) print "The std vector is %s" % numpy.std(data, 0) heatmap, xedges, yedges = numpy.histogram2d(x, y, bins=50) extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]] plt.clf() plt.scatter(x, y) # plt.show() plt.savefig(outputfile, bbox_inches='tight') def CHECK_EQ(a, b): assert a == b, "a=%s, b=%s" % (a, b) def copy_shared_parameters(src, dst): src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())] src_params = dict([(p.getName(), p) for p in src_params]) for i in xrange(dst.getParameterSize()): dst_param = dst.getParameter(i) src_param = src_params.get(dst_param.getName(), None) if src_param is None: continue src_value = src_param.getBuf(api.PARAMETER_VALUE) dst_value = dst_param.getBuf(api.PARAMETER_VALUE) CHECK_EQ(len(src_value), len(dst_value)) dst_value.copyFrom(src_value) dst_param.setValueUpdated() def print_parameters(src): src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())] print "***************" for p in src_params: print "Name is %s" % p.getName() print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray() def get_real_samples(batch_size, sample_dim): return numpy.random.rand(batch_size, sample_dim).astype('float32') * 10.0 - 10.0 # return numpy.random.normal(loc=100.0, scale=100.0, size=(batch_size, sample_dim)).astype('float32') def get_fake_samples(generator_machine, batch_size, noise_dim, sample_dim): gen_inputs = prepare_generator_data_batch(batch_size, noise_dim) gen_inputs.resize(1) gen_outputs = api.Arguments.createArguments(0) generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST) fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat() return fake_samples def get_training_loss(training_machine, inputs): outputs = api.Arguments.createArguments(0) training_machine.forward(inputs, outputs, api.PASS_TEST) loss = outputs.getSlotValue(0).copyToNumpyMat() return numpy.mean(loss) def prepare_discriminator_data_batch( generator_machine, batch_size, noise_dim, sample_dim): fake_samples = get_fake_samples(generator_machine, batch_size / 2, noise_dim, sample_dim) real_samples = get_real_samples(batch_size / 2, sample_dim) all_samples = numpy.concatenate((fake_samples, real_samples), 0) all_labels = numpy.concatenate( (numpy.zeros(batch_size / 2, dtype='int32'), numpy.ones(batch_size / 2, dtype='int32')), 0) inputs = api.Arguments.createArguments(2) inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(all_samples)) inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(all_labels)) return inputs def prepare_discriminator_data_batch_pos(batch_size, noise_dim, sample_dim): real_samples = get_real_samples(batch_size, sample_dim) labels = numpy.ones(batch_size, dtype='int32') inputs = api.Arguments.createArguments(2) inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(real_samples)) inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(labels)) return inputs def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise_dim, sample_dim): fake_samples = get_fake_samples(generator_machine, batch_size, noise_dim, sample_dim) labels = numpy.zeros(batch_size, dtype='int32') inputs = api.Arguments.createArguments(2) inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(fake_samples)) inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(labels)) return inputs def prepare_generator_data_batch(batch_size, dim): noise = numpy.random.normal(size=(batch_size, dim)).astype('float32') label = numpy.ones(batch_size, dtype='int32') inputs = api.Arguments.createArguments(2) inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(noise)) inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(label)) return inputs def find(iterable, cond): for item in iterable: if cond(item): return item return None def get_layer_size(model_conf, layer_name): layer_conf = find(model_conf.layers, lambda x: x.name == layer_name) assert layer_conf is not None, "Cannot find '%s' layer" % layer_name return layer_conf.size def main(): api.initPaddle('--use_gpu=0', '--dot_period=100', '--log_period=10000') gen_conf = parse_config("gan_conf.py", "mode=generator_training") dis_conf = parse_config("gan_conf.py", "mode=discriminator_training") generator_conf = parse_config("gan_conf.py", "mode=generator") batch_size = dis_conf.opt_config.batch_size noise_dim = get_layer_size(gen_conf.model_config, "noise") sample_dim = get_layer_size(dis_conf.model_config, "sample") # this create a gradient machine for discriminator dis_training_machine = api.GradientMachine.createFromConfigProto( dis_conf.model_config) gen_training_machine = api.GradientMachine.createFromConfigProto( gen_conf.model_config) # generator_machine is used to generate data only, which is used for # training discrinator logger.info(str(generator_conf.model_config)) generator_machine = api.GradientMachine.createFromConfigProto( generator_conf.model_config) dis_trainer = api.Trainer.create( dis_conf, dis_training_machine) gen_trainer = api.Trainer.create( gen_conf, gen_training_machine) dis_trainer.startTrain() gen_trainer.startTrain() copy_shared_parameters(gen_training_machine, dis_training_machine) copy_shared_parameters(gen_training_machine, generator_machine) curr_train = "dis" curr_strike = 0 MAX_strike = 5 for train_pass in xrange(10): dis_trainer.startTrainPass() gen_trainer.startTrainPass() for i in xrange(100000): # data_batch_dis = prepare_discriminator_data_batch( # generator_machine, batch_size, noise_dim, sample_dim) # dis_loss = get_training_loss(dis_training_machine, data_batch_dis) data_batch_dis_pos = prepare_discriminator_data_batch_pos( batch_size, noise_dim, sample_dim) dis_loss_pos = get_training_loss(dis_training_machine, data_batch_dis_pos) data_batch_dis_neg = prepare_discriminator_data_batch_neg( generator_machine, batch_size, noise_dim, sample_dim) dis_loss_neg = get_training_loss(dis_training_machine, data_batch_dis_neg) dis_loss = (dis_loss_pos + dis_loss_neg) / 2.0 data_batch_gen = prepare_generator_data_batch( batch_size, noise_dim) gen_loss = get_training_loss(gen_training_machine, data_batch_gen) if i % 1000 == 0: print "d_loss is %s g_loss is %s" % (dis_loss, gen_loss) if (not (curr_train == "dis" and curr_strike == MAX_strike)) and ((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss > 0.690 or dis_loss > gen_loss): if curr_train == "dis": curr_strike += 1 else: curr_train = "dis" curr_strike = 1 dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_neg) dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos) # dis_loss = numpy.mean(dis_trainer.getForwardOutput()[0]["value"]) # print "getForwardOutput loss is %s" % dis_loss copy_shared_parameters(dis_training_machine, gen_training_machine) else: if curr_train == "gen": curr_strike += 1 else: curr_train = "gen" curr_strike = 1 gen_trainer.trainOneDataBatch(batch_size, data_batch_gen) copy_shared_parameters(gen_training_machine, dis_training_machine) copy_shared_parameters(gen_training_machine, generator_machine) dis_trainer.finishTrainPass() gen_trainer.finishTrainPass() fake_samples = get_fake_samples(generator_machine, batch_size, noise_dim, sample_dim) plot2DScatter(fake_samples, "./train_pass%s.png" % train_pass) dis_trainer.finishTrain() gen_trainer.finishTrain() if __name__ == '__main__': main()