Cuda¶
Dynamic Link Libs¶
hl_dso_loader.h¶
Functions
-
void
GetCublasDsoHandle
(void **dso_handle)¶ load the DSO of CUBLAS
- Parameters
**dso_handle
-dso handler
-
void
GetCudnnDsoHandle
(void **dso_handle)¶ load the DSO of CUDNN
- Parameters
**dso_handle
-dso handler
-
void
GetCudartDsoHandle
(void **dso_handle)¶ load the DSO of CUDA Run Time
- Parameters
**dso_handle
-dso handler
-
void
GetCurandDsoHandle
(void **dso_handle)¶ load the DSO of CURAND
- Parameters
**dso_handle
-dso handler
GPU Resources¶
hl_cuda.ph¶
hl_cuda.h¶
Typedefs
-
typedef struct _hl_event_st *
hl_event_t
¶ HPPL event.
Functions
-
int
hl_get_cuda_lib_version
()¶ return cuda runtime api version.
-
void
hl_start
()¶ HPPL strat(Initialize all GPU).
-
void
hl_specify_devices_start
(int *device, int number)¶ HPPL start(Initialize the specific GPU).
- Parameters
device
-device id(0, 1......). if device is NULL, will start all GPU.
number
-number of devices.
-
bool
hl_device_can_access_peer
(int device, int peerDevice)¶ Queries if a device may directly access a peer device’s memory.
- Return
- Returns true if device is capable of directly accessing memory from peerDevice and false otherwise.
- Parameters
device
-Device from which allocations on peerDevice are to be directly accessed.
peerDevice
-Device on which the allocations to be directly accessed by device reside.
-
void
hl_device_enable_peer_access
(int peerDevice)¶ Enables direct access to memory allocations on a peer device.
- Parameters
peerDevice
-Peer device to enable direct access to from the current device
-
void
hl_init
(int device)¶ Init a work thread.
- Parameters
device
-device id.
-
void
hl_fini
()¶ Finish a work thread.
-
void
hl_set_sync_flag
(bool flag)¶ Set synchronous/asynchronous flag.
- Note
- This setting is only valid for the current worker thread.
- Parameters
flag
-true(default), set synchronous flag. false, set asynchronous flag.
-
bool
hl_get_sync_flag
()¶ Get synchronous/asynchronous flag.
- Return
- Synchronous call true. Asynchronous call false.
-
int
hl_get_device_count
()¶ Returns the number of compute-capable devices.
-
void
hl_set_device
(int device)¶ Set device to be used.
- Parameters
device
-device id.
-
int
hl_get_device
()¶ Returns which device is currently being used.
- Return
- device device id.
-
void *
hl_malloc_device
(size_t size)¶ Allocate device memory.
- Return
- dest_d pointer to device memory.
- Parameters
size
-size in bytes to copy.
-
void
hl_free_mem_device
(void *dest_d)¶ Free device memory.
- Parameters
dest_d
-pointer to device memory.
-
void *
hl_malloc_host
(size_t size)¶ Allocate host page-lock memory.
- Return
- dest_h pointer to host memory.
- Parameters
size
-size in bytes to copy.
-
void
hl_free_mem_host
(void *dest_h)¶ Free host page-lock memory.
- Parameters
dest_h
-pointer to host memory.
-
void
hl_memcpy
(void *dst, void *src, size_t size)¶ Copy data.
- Parameters
dst
-dst memory address(host or device).
src
-src memory address(host or device).
size
-size in bytes to copy.
-
void
hl_memset_device
(void *dest_d, int value, size_t size)¶ Set device memory to a value.
- Parameters
dest_d
-pointer to device memory.
value
-value to set for each byte of specified memory.
size
-size in bytes to set.
-
void
hl_memcpy_host2device
(void *dest_d, void *src_h, size_t size)¶ Copy host memory to device memory.
- Parameters
dest_d
-dst memory address.
src_h
-src memory address.
size
-size in bytes to copy.
-
void
hl_memcpy_device2host
(void *dest_h, void *src_d, size_t size)¶ Copy device memory to host memory.
- Parameters
dest_h
-dst memory address.
src_d
-src memory address.
size
-size in bytes to copy.
-
void
hl_memcpy_device2device
(void *dest_d, void *src_d, size_t size)¶ Copy device memory to device memory.
- Parameters
dest_d
-dst memory address.
src_d
-src memory address.
size
-size in bytes to copy.
-
void
hl_rand
(real *dest_d, size_t num)¶ Generate uniformly distributed floats (0, 1.0].
- Parameters
dest_d
-pointer to device memory to store results.
num
-number of floats to generate.
-
void
hl_srand
(unsigned int seed)¶ Set the seed value of the random number generator.
- Parameters
seed
-seed value.
-
void
hl_memcpy_async
(void *dst, void *src, size_t size, hl_stream_t stream)¶ Copy data.
- Parameters
dst
-dst memory address(host or device).
src
-src memory address(host or device).
size
-size in bytes to copy.
stream
-stream id.
-
void
hl_stream_synchronize
(hl_stream_t stream)¶ Waits for stream tasks to complete.
- Parameters
stream
-stream id.
-
void
hl_create_event
(hl_event_t *event)¶ Creates an event object.
- Parameters
event
-New event.
-
void
hl_destroy_event
(hl_event_t event)¶ Destroys an event object.
- Parameters
event
-Event to destroy.
-
float
hl_event_elapsed_time
(hl_event_t start, hl_event_t end)¶ Computes the elapsed time between events.
- Return
- time Time between start and end in ms.
- Parameters
start
-Starting event.
end
-Ending event.
-
void
hl_stream_record_event
(hl_stream_t stream, hl_event_t event)¶ Records an event.
- Parameters
stream
-Stream in which to insert event.
event
-Event waiting to be recorded as completed.
-
void
hl_stream_wait_event
(hl_stream_t stream, hl_event_t event)¶ Make a compute stream wait on an event.
- Parameters
stream
-Stream in which to insert event.
event
-Event to wait on.
-
void
hl_event_synchronize
(hl_event_t event)¶ Wait for an event to complete.
- Parameters
event
-event to wait for.
-
void
hl_set_device_flags_block
()¶ Sets block flags to be used for device executions.
- Note
- This interface needs to be called before hl_start.
-
const char *
hl_get_device_error_string
()¶ Returns the last error string from a cuda runtime call.
-
const char *
hl_get_device_error_string
(size_t err)¶ Returns the last error string from a cuda runtime call.
- See
- hl_get_device_last_error()
- Parameters
err
-error number.
-
int
hl_get_device_last_error
()¶ Returns the last error number.
- Return
- error number.
- See
- hl_get_device_error_string()
-
void
hl_cuda_event_query
(hl_event_t event, bool &isNotReady)¶ hppl query event.
- Parameters
event
-cuda event to query.
isNotReady
-this work under device has not yet been completed, vice versa.
-
void
hl_device_synchronize
()¶ hppl device synchronization.
CUDA Wrapper¶
hl_cuda_cublas.h¶
Functions
-
void
hl_matrix_transpose
(real *A_d, real *C_d, int dimM, int dimN, int lda, int ldc)¶ Matrix transpose: C_d = T(A_d)
- Parameters
A_d
-input matrix (M x N).
C_d
-output matrix (N x M).
dimM
-matrix height.
dimN
-matrix width.
lda
-the first dimension of A_d.
ldc
-the first dimension of C_d.
-
void
hl_matrix_transpose
(real *A_d, real *C_d, int dimM, int dimN)¶
-
void
hl_matrix_mul
(real *A_d, hl_trans_op_t transa, real *B_d, hl_trans_op_t transb, real *C_d, int dimM, int dimN, int dimK, real alpha, real beta, int lda, int ldb, int ldc)¶ C_d = alpha*(op(A_d) * op(B_d)) + beta*C_d.
- Parameters
A_d
-input.
transa
-operation op(A) that is non-or transpose.
B_d
-input.
transb
-operation op(B) that is non-or transpose.
C_d
-output.
dimM
-matrix height of op(A) & C
dimN
-matrix width of op(B) & C
dimK
-width of op(A) & height of op(B)
alpha
-scalar used for multiplication.
beta
-scalar used for multiplication.
lda
-the first dimension of A_d.
ldb
-the first dimension of B_d.
ldc
-the first dimension of C_d.
-
void
hl_matrix_mul
(real *A_d, hl_trans_op_t transa, real *B_d, hl_trans_op_t transb, real *C_d, int dimM, int dimN, int dimK, real alpha, real beta)¶ C_d = alpha*(op(A_d) * op(B_d)) + beta*C_d.
- Parameters
A_d
-input.
transa
-operation op(A) that is non-or transpose.
B_d
-input.
transb
-operation op(B) that is non-or transpose.
C_d
-output.
dimM
-matrix height of op(A) & C
dimN
-matrix width of op(B) & C
dimK
-width of op(A) & height of op(B)
alpha
-scalar used for multiplication.
beta
-scalar used for multiplication.
-
void
hl_matrix_mul_vector
(real *A_d, hl_trans_op_t trans, real *B_d, real *C_d, int dimM, int dimN, real alpha, real beta, int lda, int incb, int incc)¶ This function performs the matrix-vector multiplication. C_d = alpha*op(A_d)*B_d + beta*C_d.
- Parameters
A_d
-matrix.
trans
-operation op(A) that is non-or transpose.
B_d
-vector with dimN(dimM) elements if trans==HPPL_OP_N(HPPL_OP_T).
C_d
-vector with dimM(dimN) elements if trans==HPPL_OP_N(HPPL_OP_T).
dimM
-number of rows of matrix A_d.
dimN
-number of columns of matrix A_d.
alpha
-scalar used for multiplication.
beta
-scalar used for multiplication.
lda
-the first dimension of A_d.
incb
-increase B_d size for compaction.
incc
-increase C_d size for compaction.
-
void
hl_matrix_mul_vector
(real *A_d, hl_trans_op_t trans, real *B_d, real *C_d, int dimM, int dimN, real alpha, real beta)¶ This function performs the matrix-vector multiplication. C_d = alpha*op(A_d)*B_d + beta*C_d.
- Parameters
A_d
-matrix.
trans
-operation op(A) that is non-or transpose.
B_d
-vector with dimN(dimM) elements if trans==HPPL_OP_N(HPPL_OP_T).
C_d
-vector with dimM(dimN) elements if trans==HPPL_OP_N(HPPL_OP_T).
dimM
-number of rows of matrix A_d.
dimN
-number of columns of matrix A_d.
alpha
-scalar used for multiplication.
beta
-scalar used for multiplication.
hl_cuda_cudnn.h¶
Typedefs
-
typedef struct _hl_tensor_descriptor *
hl_tensor_descriptor
¶ hppl image descriptor.
-
typedef struct _hl_pooling_descriptor *
hl_pooling_descriptor
¶ hppl pooling descriptor.
-
typedef struct _hl_filter_descriptor *
hl_filter_descriptor
¶ hppl filter descriptor.
-
typedef struct _hl_convolution_descriptor *
hl_convolution_descriptor
¶ hppl filter descriptor.
Enums
Functions
-
int
hl_get_cudnn_lib_version
()¶ return cudnn lib version
-
void
hl_create_tensor_descriptor
(hl_tensor_descriptor *image_desc)¶ create image descriptor.
- Parameters
image_desc
-image descriptor.
-
void
hl_tensor_reshape
(hl_tensor_descriptor image_desc, int batch_size, int feature_maps, int height, int width)¶ reshape image descriptor.
- Parameters
image_desc
-image descriptor.
batch_size
-input batch size.
feature_maps
-image feature maps.
height
-image height.
width
-image width.
-
void
hl_tensor_reshape
(hl_tensor_descriptor image_desc, int batch_size, int feature_maps, int height, int width, int nStride, int cStride, int hStride, int wStride)¶ reshape image descriptor.
- Parameters
image_desc
-image descriptor.
batch_size
-input batch size.
feature_maps
-image feature maps.
height
-image height.
width
-image width.
nStride
-stride between two consecutive images.
cStride
-stride between two consecutive feature maps.
hStride
-stride between two consecutive rows.
wStride
-stride between two consecutive columns.
-
void
hl_destroy_tensor_descriptor
(hl_tensor_descriptor image_desc)¶ destroy image descriptor.
- Parameters
image_desc
-hppl image descriptor.
-
void
hl_create_pooling_descriptor
(hl_pooling_descriptor *pooling_desc, hl_pooling_mode_t mode, int height, int width, int height_padding, int width_padding, int stride_height, int stride_width)¶ create pooling descriptor.
- Parameters
pooling_desc
-pooling descriptor.
mode
-pooling mode.
height
-height of the pooling window.
width
-width of the pooling window.
height_padding
-padding height.
width_padding
-padding width.
stride_height
-pooling vertical stride.
stride_width
-pooling horizontal stride.
-
void
hl_destroy_pooling_descriptor
(hl_pooling_descriptor pooling_desc)¶ destroy pooling descriptor.
- Parameters
pooling_desc
-hppl pooling descriptor.
-
void
hl_pooling_forward
(hl_tensor_descriptor input, real *input_image, hl_tensor_descriptor output, real *output_image, hl_pooling_descriptor pooling)¶ pooling forward(calculate output image).
- Parameters
input
-input image descriptor.
input_image
-input image data.
output
-output image descriptor.
output_image
-output image data.
pooling
-pooling descriptor.
-
void
hl_pooling_backward
(hl_tensor_descriptor input, real *input_image, real *input_image_grad, hl_tensor_descriptor output, real *output_image, real *output_image_grad, hl_pooling_descriptor pooling)¶ pooling backward(calculate input image gradient).
- Parameters
input
-input image descriptor.
input_image
-input image data.
input_image_grad
-input image gradient data.
output
-output image descriptor.
output_image
-output image data.
output_image_grad
-output image gradient data.
pooling
-pooling descriptor.
-
void
hl_create_filter_descriptor
(hl_filter_descriptor *filter, int input_feature_maps, int output_feature_maps, int height, int width)¶ create filter descriptor.
- Parameters
filter
-filter descriptor.
input_feature_maps
-input image feature maps.
output_feature_maps
-output image feature maps.
height
-filter height.
width
-filter width.
-
void
hl_conv_workspace
(hl_tensor_descriptor input, hl_tensor_descriptor output, hl_filter_descriptor filter, hl_convolution_descriptor conv, int *convFwdAlgo, size_t *fwdLimitBytes, int *convBwdDataAlgo, size_t *bwdDataLimitBytes, int *convBwdFilterAlgo, size_t *bwdFilterLimitBytes)¶ convolution workspace configuration
- Parameters
input
-image descriptor
output
-image descriptor
filter
-filter descriptor
conv
-convolution descriptor
convFwdAlgo
-forward algorithm
fwdLimitBytes
-forward workspace size
convBwdDataAlgo
-backward data algorithm
bwdDataLimitBytes
-backward data workspace size
convBwdFilterAlgo
-backward filter algorithm
bwdFilterLimitBytes
-backward filter workspace size
-
void
hl_destroy_filter_descriptor
(hl_filter_descriptor filter)¶ destroy filter descriptor.
- Parameters
filter
-hppl filter descriptor.
-
void
hl_create_convolution_descriptor
(hl_convolution_descriptor *conv, hl_tensor_descriptor image, hl_filter_descriptor filter, int padding_height, int padding_width, int stride_height, int stride_width)¶ create convolution descriptor.
- Parameters
conv
-conv descriptor.
image
-input image descriptor.
filter
-filter descriptor.
padding_height
-padding height.
padding_width
-padding width.
stride_height
-stride height.
stride_width
-stride width.
-
void
hl_reset_convolution_descriptor
(hl_convolution_descriptor conv, hl_tensor_descriptor image, hl_filter_descriptor filter, int padding_height, int padding_width, int stride_height, int stride_width)¶ reset convolution descriptor.
- Parameters
conv
-conv descriptor.
image
-input image descriptor.
filter
-filter descriptor.
padding_height
-padding height.
padding_width
-padding width.
stride_height
-stride height.
stride_width
-stride width.
-
void
hl_destroy_convolution_descriptor
(hl_convolution_descriptor conv)¶ destroy convolution descriptor.
- Parameters
conv
-hppl convolution descriptor.
-
void
hl_convolution_forward
(hl_tensor_descriptor input, real *input_data, hl_tensor_descriptor output, real *output_data, hl_filter_descriptor filter, real *filter_data, hl_convolution_descriptor conv, void *gpuWorkSpace, size_t sizeInBytes, int convFwdAlgo)¶ convolution forward(calculate output image).
- Parameters
input
-input image descriptor.
input_data
-input image data.
output
-output image descriptor.
output_data
-output image data.
filter
-filter descriptor.
filter_data
-filter data.
conv
-convolution descriptor.
gpuWorkSpace
-limited gpu workspace.
sizeInBytes
-gpu workspace size (bytes).
convFwdAlgo
-forward algorithm.
-
void
hl_convolution_forward_add_bias
(hl_tensor_descriptor bias, real *bias_data, hl_tensor_descriptor output, real *output_data)¶ convolution forward add bias(calculate output add bias).
- Parameters
bias
-bias descriptor.
bias_data
-bias data.
output
-output image descriptor.
output_data
-output image data.
-
void
hl_convolution_backward_filter
(hl_tensor_descriptor input, real *input_data, hl_tensor_descriptor output, real *output_grad_data, hl_filter_descriptor filter, real *filter_grad_data, hl_convolution_descriptor conv, void *gpuWorkSpace, size_t sizeInBytes, int convBwdFilterAlgo)¶ convolution backward filter(calculate filter grad data).
- Parameters
input
-input image descriptor.
input_data
-input image data.
output
-output image descriptor.
output_grad_data
-output image grad data.
filter
-filter descriptor.
filter_grad_data
-filter grad data.
conv
-convolution descriptor.
gpuWorkSpace
-limited gpu workspace.
sizeInBytes
-gpu workspace size (bytes).
convBwdFilterAlgo
-backward filter algorithm.
-
void
hl_convolution_backward_data
(hl_tensor_descriptor input, real *input_data_grad, hl_tensor_descriptor output, real *output_grad_data, hl_filter_descriptor filter, real *filter_data, hl_convolution_descriptor conv, void *gpuWorkSpace, size_t sizeInBytes, int convBwdDataAlgo)¶ convolution backward data(calculate input image grad data).
- Parameters
input
-input image descriptor.
input_data_grad
-input image grad data.
output
-output image descriptor.
output_grad_data
-output image grad data.
filter
-filter descriptor.
filter_data
-filter data.
conv
-convolution descriptor.
gpuWorkSpace
-limited gpu workspace.
sizeInBytes
-gpu workspace size (bytes).
convBwdDataAlgo
-backward data algorithm.
-
void
hl_convolution_backward_bias
(hl_tensor_descriptor bias, real *bias_grad_data, hl_tensor_descriptor output, real *output_grad_data)¶ convolution backward bias(calculate bias grad data).
- Parameters
bias
-bias descriptor.
bias_grad_data
-bias grad data.
output
-output image descriptor.
output_grad_data
-output image grad data.
-
void
hl_softmax_forward
(real *input, real *output, int height, int width)¶ softmax forward.
- Parameters
input
-input value.
output
-output value.
height
-matrix height.
width
-matrix width.
-
void
hl_softmax_backward
(real *output_value, real *output_grad, int height, int width)¶ softmax backward.
- Parameters
output_value
-output value data.
output_grad
-output grad data.
height
-matrix height.
width
-matrix width.
-
void
hl_batch_norm_forward_training
(hl_tensor_descriptor inputDesc, real *input, hl_tensor_descriptor outputDesc, real *output, hl_tensor_descriptor bnParamDesc, real *scale, real *bias, double factor, real *runningMean, real *runningInvVar, double epsilon, real *savedMean, real *savedVar)¶ cudnn batch norm forward.
- Parameters
inputDesc
-input tensor descriptor desc.
input
-input data.
outputDesc
-output tensor descriptor desc.
output
-output data.
bnParamDesc
-tensor descriptor desc. bnScale, bnBias, running mean/var, save_mean/var.
scale
-batch normalization scale parameter (in original paper scale is referred to as gamma).
bias
-batch normalization bias parameter (in original paper scale is referred to as beta).
factor
-Factor used in the moving average computation. runningMean = newMean * factor
- runningMean * (1 - factor)
runningMean
-running mean.
runningInvVar
-running variance.
epsilon
-Epsilon value used in the batch normalization formula.
savedMean
-optional cache to save intermediate results.
savedVar
-optional cache to save intermediate results.
-
void
hl_batch_norm_forward_inference
(hl_tensor_descriptor inputDesc, real *input, hl_tensor_descriptor outputDesc, real *output, hl_tensor_descriptor bnParamDesc, real *scale, real *bias, real *estimatedMean, real *estimatedVar, double epsilon)¶ cudnn batch norm forward.
- Parameters
inputDesc
-input tensor descriptor desc.
input
-input data.
outputDesc
-output tensor descriptor desc.
output
-output data.
bnParamDesc
-tensor descriptor desc. bnScale, bnBias, running mean/var, save_mean/var.
scale
-batch normalization scale parameter (in original paper scale is referred to as gamma).
bias
-batch normalization bias parameter (in original paper scale is referred to as beta).
estimatedMean
-estimatedVar
-It is suggested that resultRunningMean, resultRunningVariance from the cudnnBatchNormalizationForwardTraining call accumulated during the training phase are passed as inputs here.
epsilon
-Epsilon value used in the batch normalization formula.
-
void
hl_batch_norm_backward
(hl_tensor_descriptor inputDesc, real *input, hl_tensor_descriptor outGradDesc, real *outGrad, hl_tensor_descriptor inGradDesc, real *inGrad, hl_tensor_descriptor dBnParamDesc, real *scale, real *scaleGrad, real *biasGrad, double epsilon, real *savedMean, real *savedInvVar)¶ cudnn batch norm forward.
- Parameters
inputDesc
-input tensor descriptor desc.
input
-input data.
outGradDesc
-output tensor descriptor desc.
outGrad
-output data.
inGradDesc
-input tensor descriptor desc.
inGrad
-input data.
dBnParamDesc
-tensor descriptor desc. bnScale, bnBias, running mean/var, save_mean/var.
scale
-batch normalization scale parameter (in original paper scale is referred to as gamma).
scaleGrad
-batch normalization scale parameter (in original paper scale is referred to as gamma) gradient.
biasGrad
-batch normalization bias parameter (in original paper scale is referred to as beta) gradient.
epsilon
-Epsilon value used in the batch normalization formula.
savedMean
-optional cache to save intermediate results.
savedInvVar
-optional cache to save intermediate results.