// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/api/paddle_pass_builder.h" #ifdef PADDLE_WITH_CUDA #include #endif #ifdef PADDLE_WITH_HIP #include #endif #include #include #include namespace paddle { void PaddlePassBuilder::AppendPass(const std::string &pass_type) { passes_.push_back(pass_type); } void PaddlePassBuilder::TurnOnDebug() { std::vector passes; auto it = std::begin(passes_); while (it != std::end(passes_)) { if (*it != "graph_viz_pass") { it = passes_.insert(it + 1, "graph_viz_pass"); } else { ++it; } } } std::string PaddlePassBuilder::DebugString() { std::stringstream ss; ss << "Passes to apply:\n"; for (auto &pass : passes_) { ss << " - " << pass << '\n'; } return ss.str(); } void PaddlePassBuilder::DeletePass(const std::string &pass_type) { deleted_passes_.insert(pass_type); auto it = std::begin(passes_); while (it != std::end(passes_)) { if (*it == pass_type) { it = passes_.erase(it); } else { ++it; } } } size_t PaddlePassBuilder::GetPassIndex(const std::string &pass_type) { auto iter = std::find(std::begin(passes_), std::end(passes_), pass_type); if (iter == std::end(passes_)) return -1; return std::distance(std::begin(passes_), iter); } void PaddlePassBuilder::InsertPass(size_t idx, const std::string &pass_type) { passes_.insert(std::begin(passes_) + idx, pass_type); } void PaddlePassBuilder::DeletePass(size_t idx) { passes_.erase(std::begin(passes_) + idx); } void PaddlePassBuilder::AppendAnalysisPass(const std::string &pass) { analysis_passes_.push_back(pass); } void PaddlePassBuilder::ClearPasses() { passes_.clear(); } const std::vector kTRTSubgraphPasses({ "adaptive_pool2d_convert_global_pass", // "shuffle_channel_detect_pass", // "quant_conv2d_dequant_fuse_pass", // "delete_fill_constant_op_pass", // "delete_quant_dequant_op_pass", // "delete_quant_dequant_filter_op_pass", // "trt_delete_weight_dequant_linear_op_pass", // "delete_quant_dequant_linear_op_pass", // "identity_scale_op_clean_pass", // "add_support_int8_pass", // // "fc_fuse_pass", // "simplify_with_basic_ops_pass", // "trt_embedding_eltwise_layernorm_fuse_pass", // "preln_embedding_eltwise_layernorm_fuse_pass", // "delete_c_identity_op_pass", // "trt_multihead_matmul_fuse_pass_v2", // "trt_multihead_matmul_fuse_pass_v3", // "multihead_matmul_roformer_fuse_pass", // "constant_folding_pass", // "vit_attention_fuse_pass", // #if defined _WIN32 // Windows CI is TensorRT7.0. Remove this after upgrading. #else "trt_skip_layernorm_fuse_pass", // "preln_skip_layernorm_fuse_pass", // #endif "layernorm_shift_partition_fuse_pass", // "merge_layernorm_fuse_pass", // "preln_residual_bias_fuse_pass", // "preln_layernorm_x_fuse_pass", // "reverse_roll_fuse_pass", // "conv_bn_fuse_pass", // "unsqueeze2_eltwise_fuse_pass", // "trt_squeeze2_matmul_fuse_pass", // "trt_flatten2_matmul_fuse_pass", // "trt_map_matmul_v2_to_mul_pass", // "trt_map_matmul_v2_to_matmul_pass", // "trt_map_matmul_to_mul_pass", // "fc_fuse_pass", // "conv_elementwise_add_fuse_pass", // "remove_padding_recover_padding_pass", // "delete_remove_padding_recover_padding_pass", // // "yolo_box_fuse_pass", // "dense_fc_to_sparse_pass", // "dense_multihead_matmul_to_sparse_pass", // "tensorrt_subgraph_pass", // "conv_bn_fuse_pass", // #if CUDNN_VERSION >= 7100 // To run conv_fusion, the version of cudnn must be // guaranteed at least v7 // cudnn8.0 has memory leak problem in conv + eltwise + act, so we // disable the pass. #if !(CUDNN_VERSION >= 8000 && CUDNN_VERSION < 8100) "conv_elementwise_add_act_fuse_pass", // "conv_elementwise_add2_act_fuse_pass", // #endif #endif "transpose_flatten_concat_fuse_pass", }); const std::vector kDlnneSubgraphPasses({ "is_test_pass", // "delete_dropout_op_pass", // "simplify_with_basic_ops_pass", // "conv_bn_fuse_pass", // "depthwise_conv_bn_fuse_pass", // "shuffle_channel_detect_pass", // "dlnne_subgraph_pass", // }); const std::vector kLiteSubgraphPasses({ #ifdef PADDLE_WITH_LITE "lite_subgraph_pass", #endif }); // TODO(inference): Most of the existing pass fusion operators do not // support fp16/bf16 precision, temporarily use low precision pass to prevent // running errors. After fusion operator supports low precision, delete this. const std::vector kGpuLowerPrecisionPasses{ "identity_scale_op_clean_pass", "simplify_with_basic_ops_pass", "silu_fuse_pass", "delete_quant_dequant_linear_op_pass", "delete_weight_dequant_linear_op_pass", "map_depthwise_conv_to_conv_pass", "conv_bn_fuse_pass", "conv_eltwiseadd_bn_fuse_pass", "conv_elementwise_add_act_fuse_pass", "conv_elementwise_add2_act_fuse_pass", "conv_elementwise_add_fuse_pass", "conv2d_fusion_layout_transfer_pass", "multihead_matmul_fuse_pass_v2", "fused_multi_transformer_encoder_pass", "fused_multi_transformer_decoder_pass", "fused_multi_transformer_encoder_fuse_qkv_pass", "fused_multi_transformer_decoder_fuse_qkv_pass", "multi_devices_fused_multi_transformer_encoder_fuse_qkv_pass", "multi_devices_fused_multi_transformer_decoder_fuse_qkv_pass", "fuse_multi_transformer_layer_pass", "gpu_cpu_map_matmul_v2_to_mul_pass", "gpu_cpu_map_matmul_v2_to_matmul_pass", "fc_fuse_pass", "fc_elementwise_layernorm_fuse_pass", "embedding_eltwise_layernorm_fuse_pass", }; const std::vector kTrtLowerPrecisionPasses{ "simplify_with_basic_ops_pass", // "conv_bn_fuse_pass", // "conv_eltwiseadd_bn_fuse_pass", "trt_embedding_eltwise_layernorm_fuse_pass", "trt_skip_layernorm_fuse_pass", "trt_map_matmul_v2_to_mul_pass", "trt_map_matmul_v2_to_matmul_pass", "trt_map_matmul_to_mul_pass", "fc_fuse_pass", "tensorrt_subgraph_pass", }; const std::vector kCINNCompilerPasses{ "gpu_cpu_map_matmul_v2_to_mul_pass", "gpu_cpu_map_matmul_v2_to_matmul_pass", "gpu_cpu_map_matmul_to_mul_pass", "build_cinn_pass", }; GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) { passes_.assign({ "identity_scale_op_clean_pass", // "is_test_pass", // "simplify_with_basic_ops_pass", // "delete_quant_dequant_linear_op_pass", // "delete_weight_dequant_linear_op_pass", // "map_depthwise_conv_to_conv_pass", // "constant_folding_pass", // "silu_fuse_pass", // "conv_bn_fuse_pass", // "conv_eltwiseadd_bn_fuse_pass", // "embedding_eltwise_layernorm_fuse_pass", // "multihead_matmul_fuse_pass_v2", // "vit_attention_fuse_pass", // "fused_multi_transformer_encoder_pass", // "fused_multi_transformer_decoder_pass", // "fused_multi_transformer_encoder_fuse_qkv_pass", // "fused_multi_transformer_decoder_fuse_qkv_pass", // "multi_devices_fused_multi_transformer_encoder_fuse_qkv_pass", // "multi_devices_fused_multi_transformer_decoder_fuse_qkv_pass", // "fuse_multi_transformer_layer_pass", // "gpu_cpu_squeeze2_matmul_fuse_pass", // "gpu_cpu_reshape2_matmul_fuse_pass", // "gpu_cpu_flatten2_matmul_fuse_pass", // "gpu_cpu_map_matmul_v2_to_mul_pass", // "gpu_cpu_map_matmul_v2_to_matmul_pass", // "matmul_scale_fuse_pass", // "multihead_matmul_fuse_pass_v3", // "gpu_cpu_map_matmul_to_mul_pass", // "fc_fuse_pass", // "fc_elementwise_layernorm_fuse_pass", // #if CUDNN_VERSION >= 7100 // To run conv_fusion, the version of cudnn must be // guaranteed at least v7 // cudnn8.0 has memory leak problem in conv + eltwise + act, so we // disable the pass. #if !(CUDNN_VERSION >= 8000 && CUDNN_VERSION < 8100) "conv_elementwise_add_act_fuse_pass", // "conv_elementwise_add2_act_fuse_pass", // #endif "conv_elementwise_add_fuse_pass", // #endif // "transpose_flatten_concat_fuse_pass", // "constant_folding_pass", // "conv2d_fusion_layout_transfer_pass", // "auto_mixed_precision_pass" }); use_gpu_ = true; } void GpuPassStrategy::EnableCUDNN() { if (!use_cudnn_) { passes_.insert(passes_.begin(), "cudnn_placement_pass"); } use_cudnn_ = true; } void GpuPassStrategy::EnableMKLDNN() { LOG(ERROR) << "GPU not support MKLDNN yet"; } void GpuPassStrategy::EnableMkldnnQuantizer() { LOG(ERROR) << "GPU not support MKL-DNN quantization"; } void GpuPassStrategy::EnableMkldnnBfloat16() { LOG(ERROR) << "GPU not support MKL-DNN bfloat16"; } void GpuPassStrategy::EnableMkldnnInt8() { LOG(ERROR) << "GPU not support MKL-DNN int8"; } void GpuPassStrategy::DisableMkldnnFcPasses() { LOG(ERROR) << "GPU not support MKL-DNN fc"; } CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) { // NOTE the large fusions should be located in the front, so that they will // not be damaged by smaller ones. passes_.assign({"simplify_with_basic_ops_pass", // "layer_norm_fuse_pass", "attention_lstm_fuse_pass", // "seqconv_eltadd_relu_fuse_pass", // // "seqpool_concat_fuse_pass", // "seqpool_cvm_concat_fuse_pass", // // "embedding_fc_lstm_fuse_pass", // // TODO(wilber): fix correctness problem. // "fc_lstm_fuse_pass", // "mul_lstm_fuse_pass", // "fc_gru_fuse_pass", // "mul_gru_fuse_pass", // "seq_concat_fc_fuse_pass", // "gpu_cpu_squeeze2_matmul_fuse_pass", // "gpu_cpu_reshape2_matmul_fuse_pass", // "gpu_cpu_flatten2_matmul_fuse_pass", // "matmul_v2_scale_fuse_pass", // "gpu_cpu_map_matmul_v2_to_mul_pass", // "gpu_cpu_map_matmul_v2_to_matmul_pass", // "matmul_scale_fuse_pass", // "gpu_cpu_map_matmul_to_mul_pass", // "fc_fuse_pass", // "repeated_fc_relu_fuse_pass", // "squared_mat_sub_fuse_pass", // "conv_bn_fuse_pass", // "conv_eltwiseadd_bn_fuse_pass", // "conv_transpose_bn_fuse_pass", // "conv_transpose_eltwiseadd_bn_fuse_pass", // "is_test_pass", // "constant_folding_pass"}); use_gpu_ = false; } void CpuPassStrategy::EnableCUDNN() { LOG(ERROR) << "CPU not support cuDNN"; } void CpuPassStrategy::EnableMKLDNN() { // TODO(Superjomn) Consider the way to mix CPU with GPU. #ifdef PADDLE_WITH_MKLDNN if (!use_mkldnn_) { passes_.insert(passes_.begin(), "mkldnn_placement_pass"); for (auto &pass : std::vector({ "squeeze2_transpose2_onednn_fuse_pass", "depthwise_conv_mkldnn_pass", // "conv_bn_fuse_pass", // Execute BN passes again to "conv_eltwiseadd_bn_fuse_pass", // preserve correct pass order "conv_affine_channel_mkldnn_fuse_pass", // "conv_transpose_bn_fuse_pass", // "conv_transpose_eltwiseadd_bn_fuse_pass", // "conv_bias_mkldnn_fuse_pass", // "conv_transpose_bias_mkldnn_fuse_pass", "interpolate_mkldnn_pass", // TODO(baoachun): Need to support 5-dimensional input. // "conv3d_bias_mkldnn_fuse_pass", // "conv_elementwise_add_mkldnn_fuse_pass", "conv_activation_mkldnn_fuse_pass", // "scale_matmul_fuse_pass", // "reshape_transpose_matmul_mkldnn_fuse_pass", // "matmul_transpose_reshape_mkldnn_fuse_pass", // "matmul_elementwise_add_mkldnn_fuse_pass", // "matmul_activation_mkldnn_fuse_pass", // // Disabled due to topology-dependent speed-up "fc_mkldnn_pass", "fc_act_mkldnn_fuse_pass", "fc_elementwise_add_mkldnn_fuse_pass", // "batch_norm_act_fuse_pass", // "softplus_activation_mkldnn_fuse_pass", // "shuffle_channel_mkldnn_detect_pass", // "elt_act_mkldnn_fuse_pass", // "layer_norm_onednn_optimization_pass", // "operator_scale_onednn_fuse_pass", // "operator_unsqueeze2_onednn_fuse_pass", // "operator_reshape2_onednn_fuse_pass", // })) { passes_.push_back(pass); } } use_mkldnn_ = true; #else use_mkldnn_ = false; #endif } void CpuPassStrategy::EnableMkldnnQuantizer() { #ifdef PADDLE_WITH_MKLDNN if (!use_mkldnn_quantizer_) { passes_.push_back("cpu_quantize_placement_pass"); } use_mkldnn_quantizer_ = true; #else use_mkldnn_quantizer_ = false; #endif } void CpuPassStrategy::EnableMkldnnBfloat16() { #ifdef PADDLE_WITH_MKLDNN if (!use_mkldnn_bfloat16_) { passes_.push_back("fc_mkldnn_pass"); passes_.push_back("fc_act_mkldnn_fuse_pass"); passes_.push_back("fc_elementwise_add_mkldnn_fuse_pass"); passes_.push_back("cpu_bfloat16_placement_pass"); passes_.push_back("cpu_bfloat16_pass"); passes_.push_back("cpu_quantize_squash_pass"); } use_mkldnn_bfloat16_ = true; #else use_mkldnn_bfloat16_ = false; #endif } void CpuPassStrategy::EnableMkldnnInt8() { #ifdef PADDLE_WITH_MKLDNN if (!use_mkldnn_int8_) { passes_.clear(); passes_.push_back("simplify_with_basic_ops_pass"); passes_.push_back("quant_dequant_mkldnn_pass"); passes_.push_back("mkldnn_placement_pass"); passes_.push_back("constant_folding_pass"); passes_.push_back("squeeze2_transpose2_onednn_fuse_pass"); passes_.push_back("layer_norm_fuse_pass"); passes_.push_back("attention_lstm_fuse_pass"); passes_.push_back("seqconv_eltadd_relu_fuse_pass"); passes_.push_back("fc_lstm_fuse_pass"); passes_.push_back("mul_lstm_fuse_pass"); passes_.push_back("fc_gru_fuse_pass"); passes_.push_back("mul_gru_fuse_pass"); passes_.push_back("multi_gru_fuse_pass"); passes_.push_back("multi_gru_seq_fuse_pass"); passes_.push_back("seq_concat_fc_fuse_pass"); passes_.push_back("gpu_cpu_squeeze2_matmul_fuse_pass"); passes_.push_back("gpu_cpu_reshape2_matmul_fuse_pass"); passes_.push_back("gpu_cpu_flatten2_matmul_fuse_pass"); passes_.push_back("matmul_v2_scale_fuse_pass"); passes_.push_back("squared_mat_sub_fuse_pass"); passes_.push_back("is_test_pass"); passes_.push_back("gpu_cpu_map_matmul_v2_to_mul_pass"); passes_.push_back("gpu_cpu_map_matmul_v2_to_matmul_pass"); passes_.push_back("matmul_scale_fuse_pass"); passes_.push_back("gpu_cpu_map_matmul_to_mul_pass"); passes_.push_back("repeated_fc_relu_fuse_pass"); passes_.push_back("depthwise_conv_mkldnn_pass"); passes_.push_back("conv_bn_fuse_pass"); passes_.push_back("conv_eltwiseadd_bn_fuse_pass"); passes_.push_back("conv_affine_channel_mkldnn_fuse_pass"); passes_.push_back("conv_transpose_bn_fuse_pass"); passes_.push_back("conv_transpose_eltwiseadd_bn_fuse_pass"); passes_.push_back("conv_bias_mkldnn_fuse_pass"); passes_.push_back("conv_transpose_bias_mkldnn_fuse_pass"); passes_.push_back("conv_elementwise_add_mkldnn_fuse_pass"); passes_.push_back("conv_activation_mkldnn_fuse_pass"); passes_.push_back("fc_fuse_pass"); passes_.push_back("repeated_fc_relu_fuse_pass"); passes_.push_back("fc_mkldnn_pass"); passes_.push_back("fc_act_mkldnn_fuse_pass"); passes_.push_back("fc_elementwise_add_mkldnn_fuse_pass"); passes_.push_back("matmul_transpose_reshape_mkldnn_fuse_pass"); passes_.push_back("batch_norm_act_fuse_pass"); passes_.push_back("softplus_activation_mkldnn_fuse_pass"); passes_.push_back("compute_propagate_scales_mkldnn_pass"); passes_.push_back("scale_matmul_fuse_pass"); passes_.push_back("reshape_transpose_matmul_mkldnn_fuse_pass"); passes_.push_back("matmul_elementwise_add_mkldnn_fuse_pass"); passes_.push_back("layer_norm_onednn_optimization_pass"); passes_.push_back("operator_scale_onednn_fuse_pass"); passes_.push_back("operator_unsqueeze2_onednn_fuse_pass"); passes_.push_back("operator_reshape2_onednn_fuse_pass"); passes_.push_back("cpu_quantize_placement_pass"); passes_.push_back("cpu_quantize_pass"); passes_.push_back("cpu_quantize_squash_pass"); passes_.push_back("int8_scale_calculation_mkldnn_pass"); passes_.push_back("params_quantization_mkldnn_pass"); } use_mkldnn_int8_ = true; #else use_mkldnn_int8_ = false; #endif } void CpuPassStrategy::DisableMkldnnFcPasses() { #ifdef PADDLE_WITH_MKLDNN if (!disable_mkldnn_fc_passes_) { EraseFcMkldnnPasses(); } disable_mkldnn_fc_passes_ = true; #else disable_mkldnn_fc_passes_ = false; #endif } void CpuPassStrategy::EraseFcMkldnnPasses() { std::vector fc_passes_to_erase( {"fc_mkldnn_pass", "fc_act_mkldnn_fuse_pass", "fc_elementwise_add_mkldnn_fuse_pass"}); for (const auto &pass : fc_passes_to_erase) { int idx = GetPassIndex(pass); if (idx != -1) { passes_.erase(std::begin(passes_) + idx); } } } IpuPassStrategy::IpuPassStrategy() : PassStrategy({}) { passes_.assign({"inference_process_pass"}); } } // namespace paddle