/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/platform/device_code.h" #include #include #include #include #include "paddle/fluid/platform/enforce.h" DECLARE_string(cuda_dir); namespace paddle { namespace platform { DeviceCodePool* DeviceCodePool::pool = nullptr; void DeviceCodePool::Set(std::unique_ptr&& code) { Place place = code->GetPlace(); std::string name = code->GetName(); auto iter = device_codes_.find(place); if (iter == device_codes_.end()) { PADDLE_THROW(platform::errors::NotFound( "Place %s is not supported for runtime compiling.", place)); } auto& codes_map = iter->second; codes_map.emplace(name, std::move(code)); } platform::DeviceCode* DeviceCodePool::Get(const platform::Place& place, const std::string& name) { auto iter = device_codes_.find(place); if (iter == device_codes_.end()) { PADDLE_THROW(platform::errors::NotFound( "Place %s is not supported for runtime compiling.", place)); } auto& codes_map = iter->second; auto code_iter = codes_map.find(name); if (code_iter == codes_map.end()) { PADDLE_THROW(platform::errors::NotFound( "Device code named %s for place %s does not exist.", name.c_str(), place)); } return code_iter->second.get(); } DeviceCodePool::DeviceCodePool(const std::vector& places) { PADDLE_ENFORCE_GT(places.size(), 0, errors::InvalidArgument( "Expected the number of places >= 1. But received %d.", places.size())); // Remove the duplicated places std::set set; for (auto& p : places) { set.insert(p); } for (auto& p : set) { if (is_gpu_place(p)) { #ifdef PADDLE_WITH_CUDA device_codes_.emplace(p, DeviceCodeMap()); #else PADDLE_THROW(platform::errors::PreconditionNotMet( "CUDAPlace is not supported, please re-compile with WITH_GPU=ON.")); #endif } } #ifdef PADDLE_WITH_CUDA CUDADeviceCode::CheckAvailableStatus(); #endif } #ifdef PADDLE_WITH_CUDA static bool CheckCUDADriverResult(CUresult result, std::string caller, std::string kernel_name = "") { if (result != CUDA_SUCCESS) { const char* error = nullptr; dynload::cuGetErrorString(result, &error); LOG_FIRST_N(WARNING, 1) << "Call " << caller << " for < " << kernel_name << " > failed: " << error << " (" << result << ")"; return false; } return true; } bool CUDADeviceCode::available_ = false; void CUDADeviceCode::CheckAvailableStatus() { available_ = false; if (!dynload::HasNVRTC() || !dynload::HasCUDADriver()) { LOG_FIRST_N(WARNING, 1) << "NVRTC and CUDA driver are need for JIT compiling of CUDA code."; return; } int nvrtc_major = 0; int nvrtc_minor = 0; nvrtcResult nvrtc_result = dynload::nvrtcVersion(&nvrtc_major, &nvrtc_minor); int driver_version = 0; int dirver_major = 0; int driver_minor = 0; CUresult driver_result = dynload::cuDriverGetVersion(&driver_version); if (driver_result == CUDA_SUCCESS) { dirver_major = driver_version / 1000; driver_minor = (driver_version % 1000) / 10; } LOG_FIRST_N(INFO, 1) << "CUDA Driver Version: " << dirver_major << "." << driver_minor << "; NVRTC Version: " << nvrtc_major << "." << nvrtc_minor; if (nvrtc_result != NVRTC_SUCCESS || driver_result != CUDA_SUCCESS) { return; } int count = 0; if (CheckCUDADriverResult(dynload::cuDeviceGetCount(&count), "cuDeviceGetCount")) { available_ = true; } } static std::string FindCUDAIncludePath() { auto EndWith = [](std::string str, std::string substr) -> bool { size_t pos = str.rfind(substr); return pos != std::string::npos && pos == (str.length() - substr.length()); }; struct stat st; std::string cuda_include_path; if (!FLAGS_cuda_dir.empty()) { cuda_include_path = FLAGS_cuda_dir; if (EndWith(cuda_include_path, "/")) { cuda_include_path.erase(cuda_include_path.end() - 1); } for (std::string suffix : {"/lib", "/lib64"}) { if (EndWith(FLAGS_cuda_dir, suffix)) { cuda_include_path.erase(cuda_include_path.end() - suffix.length()); break; } } if (!EndWith(cuda_include_path, "include")) { cuda_include_path += "/include"; } // Whether the cuda_include_path exists on the file system. if (stat(cuda_include_path.c_str(), &st) == 0) { return cuda_include_path; } } cuda_include_path = "/usr/local/cuda/include"; if (stat(cuda_include_path.c_str(), &st) == 0) { return cuda_include_path; } LOG(WARNING) << "Cannot find CUDA include path." << "Please check whether CUDA is installed in the default " "installation path, or specify it by export " "FLAGS_cuda_dir=xxx."; return ""; } CUDADeviceCode::CUDADeviceCode(const Place& place, const std::string& name, const std::string& kernel) { if (!is_gpu_place(place)) { PADDLE_THROW(platform::errors::PermissionDenied( "CUDADeviceCode can only launch on GPU place.")); } place_ = place; name_ = name; kernel_ = kernel; } bool CUDADeviceCode::Compile(bool include_path) { is_compiled_ = false; if (!dynload::HasNVRTC() || !dynload::HasCUDADriver()) { LOG_FIRST_N(WARNING, 1) << "NVRTC and CUDA driver are need for JIT compiling of CUDA code."; return false; } nvrtcProgram program; if (!CheckNVRTCResult(dynload::nvrtcCreateProgram(&program, kernel_.c_str(), // buffer name_.c_str(), // name 0, // numHeaders nullptr, // headers nullptr), // includeNames "nvrtcCreateProgram")) { return false; } // Compile the program for specified compute_capability auto* dev_ctx = reinterpret_cast( DeviceContextPool::Instance().Get(place_)); int compute_capability = dev_ctx->GetComputeCapability(); std::string compute_flag = "--gpu-architecture=compute_" + std::to_string(compute_capability); std::vector options = {"--std=c++11", compute_flag.c_str()}; std::string include_option; if (include_path) { std::string cuda_include_path = FindCUDAIncludePath(); if (!cuda_include_path.empty()) { include_option = "--include-path=" + cuda_include_path; options.push_back(include_option.c_str()); } } nvrtcResult compile_result = dynload::nvrtcCompileProgram(program, // program options.size(), // numOptions options.data()); // options if (compile_result == NVRTC_ERROR_COMPILATION) { // Obtain compilation log from the program size_t log_size; if (!CheckNVRTCResult(dynload::nvrtcGetProgramLogSize(program, &log_size), "nvrtcGetProgramLogSize")) { return false; } std::vector log; log.resize(log_size + 1); if (!CheckNVRTCResult(dynload::nvrtcGetProgramLog(program, log.data()), "nvrtcGetProgramLog")) { return false; } LOG(WARNING) << "JIT compiling of CUDA code failed:" << "\n Kernel name: " << name_ << "\n Kernel body:\n" << kernel_ << "\n Compiling log: " << log.data(); return false; } // Obtain PTX from the program size_t ptx_size; if (!CheckNVRTCResult(dynload::nvrtcGetPTXSize(program, &ptx_size), "nvrtcGetPTXSize")) { return false; } ptx_.resize(ptx_size + 1); if (!CheckNVRTCResult(dynload::nvrtcGetPTX(program, ptx_.data()), "nvrtcGetPTX")) { return false; } if (!CheckNVRTCResult(dynload::nvrtcDestroyProgram(&program), "nvrtcDestroyProgram")) { return false; } if (!CheckCUDADriverResult(dynload::cuModuleLoadData(&module_, ptx_.data()), "cuModuleLoadData", name_)) { return false; } if (!CheckCUDADriverResult( dynload::cuModuleGetFunction(&function_, module_, name_.c_str()), "cuModuleGetFunction", name_)) { return false; } max_threads_ = dev_ctx->GetMaxPhysicalThreadCount(); is_compiled_ = true; return true; } void CUDADeviceCode::Launch(const size_t n, std::vector* args) const { PADDLE_ENFORCE_EQ( is_compiled_, true, errors::PreconditionNotMet( "Please compile the code before launching the kernel.")); int max_blocks = std::max(max_threads_ / num_threads_, 1); int workload_per_block = workload_per_thread_ * num_threads_; int num_blocks = std::min(max_blocks, (static_cast(n) + workload_per_block - 1) / workload_per_block); auto* dev_ctx = reinterpret_cast( DeviceContextPool::Instance().Get(place_)); PADDLE_ENFORCE_EQ( dynload::cuLaunchKernel(function_, num_blocks, 1, 1, // grid dim num_threads_, 1, 1, // block dim 0, // shared memory dev_ctx->stream(), // stream args->data(), // arguments nullptr), CUDA_SUCCESS, errors::External("Fail to launch kernel %s (in cuLaunchKernel.)", name_.c_str())); } bool CUDADeviceCode::CheckNVRTCResult(nvrtcResult result, std::string function) { if (result != NVRTC_SUCCESS) { LOG_FIRST_N(WARNING, 1) << "Call " << function << " for < " << name_ << " > failed: " << dynload::nvrtcGetErrorString(result); return false; } return true; } #endif } // namespace platform } // namespace paddle