/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/math/detail/activation_functions.h" #include "paddle/fluid/platform/hostdevice.h" #include namespace paddle { namespace operators { namespace math { namespace detail { namespace forward { template class lstm { public: HOSTDEVICE void operator()(T &value_in, T &value_ig, T &value_fg, T &value_og, T &prev_state, T &state, T &state_atv, T &output, T &checkI, T &checkF, T &checkO, ActivationType active_node, ActivationType active_gate, ActivationType active_state) { value_in = activation(value_in, active_node); value_ig = activation(value_ig + prev_state * checkI, active_gate); value_fg = activation(value_fg + prev_state * checkF, active_gate); state = value_in * value_ig + prev_state * value_fg; value_og = activation(value_og + state * checkO, active_gate); state_atv = activation(state, active_state); output = value_og * state_atv; } #ifndef __NVCC__ #ifndef __AVX__ // If not compiled with AVX instructs. Disable AVX by default static const bool avx = false; #else // Only float support AVX optimization static const bool avx = std::is_same::value; HOSTDEVICE void operator()(__m256 &value_in, __m256 &value_ig, __m256 &value_fg, __m256 &value_og, __m256 &prev_state, __m256 &state, __m256 &state_atv, __m256 &output, __m256 &checkI, __m256 &checkF, __m256 &checkO, ActivationType active_node, ActivationType active_gate, ActivationType active_state) { value_in = activation(value_in, active_node); value_ig = activation(_mm256_add_ps(value_ig, _mm256_mul_ps(prev_state, checkI)), active_gate); value_fg = activation(_mm256_add_ps(value_fg, _mm256_mul_ps(prev_state, checkF)), active_gate); state = _mm256_add_ps(_mm256_mul_ps(value_in, value_ig), _mm256_mul_ps(prev_state, value_fg)); value_og = activation(_mm256_add_ps(value_og, _mm256_mul_ps(state, checkO)), active_gate); state_atv = activation(state, active_state); output = _mm256_mul_ps(value_og, state_atv); } #endif #endif }; } // namespace forward namespace backward { template class lstm { public: HOSTDEVICE void operator()(T &value_in, T &value_ig, T &value_fg, T &value_og, T &grad_in, T &grad_ig, T &grad_fg, T &grad_og, T &prev_state, T &prev_state_grad, T &state, T &state_grad, T &state_atv, T &output_grad, T &checkI, T &checkF, T &checkO, T &checkIGrad, T &checkFGrad, T &checkOGrad, ActivationType active_node, ActivationType active_gate, ActivationType active_state) { grad_og = activation(output_grad * state_atv, value_og, active_gate); state_grad += activation(output_grad * value_og, state_atv, active_state) + grad_og * checkO; grad_in = activation(state_grad * value_ig, value_in, active_node); grad_ig = activation(state_grad * value_in, value_ig, active_gate); grad_fg = activation(state_grad * prev_state, value_fg, active_gate); prev_state_grad = grad_ig * checkI + grad_fg * checkF + state_grad * value_fg; checkIGrad = grad_ig * prev_state; checkFGrad = grad_fg * prev_state; checkOGrad = grad_og * state; } #ifndef __NVCC__ #ifndef __AVX__ // If not compiled with AVX instructs. Disable AVX by default static const bool avx = false; #else // Only float support AVX optimization static const bool avx = std::is_same::value; HOSTDEVICE void operator()( __m256 &value_in, __m256 &value_ig, __m256 &value_fg, __m256 &value_og, __m256 &grad_in, __m256 &grad_ig, __m256 &grad_fg, __m256 &grad_og, __m256 &prev_state, __m256 &prev_state_grad, __m256 &state, __m256 &state_grad, __m256 &state_atv, __m256 &output_grad, __m256 &checkI, __m256 &checkF, __m256 &checkO, __m256 &checkIGrad, __m256 &checkFGrad, __m256 &checkOGrad, ActivationType active_node, ActivationType active_gate, ActivationType active_state) { grad_og = activation(_mm256_mul_ps(output_grad, state_atv), value_og, active_gate); state_grad = _mm256_add_ps(activation(_mm256_mul_ps(output_grad, value_og), state_atv, active_state), state_grad); state_grad = _mm256_add_ps(_mm256_mul_ps(grad_og, checkO), state_grad); grad_in = activation(_mm256_mul_ps(state_grad, value_ig), value_in, active_node); grad_ig = activation(_mm256_mul_ps(state_grad, value_in), value_ig, active_gate); grad_fg = activation(_mm256_mul_ps(state_grad, prev_state), value_fg, active_gate); prev_state_grad = _mm256_add_ps(_mm256_mul_ps(grad_ig, checkI), _mm256_mul_ps(grad_fg, checkF)); prev_state_grad = _mm256_add_ps(_mm256_mul_ps(state_grad, value_fg), prev_state_grad); checkIGrad = _mm256_mul_ps(grad_ig, prev_state); checkFGrad = _mm256_mul_ps(grad_fg, prev_state); checkOGrad = _mm256_mul_ps(grad_og, state); } #endif #endif }; } // namespace backward } // namespace detail } // namespace math } // namespace operators } // namespace paddle