/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/distributed/communicator.h" #include // NOLINT #include // NOLINT #include "paddle/fluid/framework/selected_rows.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/framework/variable_helper.h" #include "paddle/fluid/operators/distributed/parameter_recv.h" #include "paddle/fluid/operators/distributed/parameter_send.h" #include "paddle/fluid/operators/math/selected_rows_functor.h" namespace paddle { namespace operators { namespace distributed { static inline void MergeVars(const std::string &var_name, const std::vector> &vars, Scope *scope) { VLOG(3) << "merge " << vars.size() << " vars " << var_name << " to 1"; PADDLE_ENFORCE(!vars.empty(), "should have value to merge!"); auto cpu_place = platform::CPUPlace(); auto &var0 = vars[0]; auto *out_var = scope->Var(var_name); if (var0->IsType()) { auto *out_t = out_var->GetMutable(); auto *out_ptr = out_t->mutable_data( var0->Get().dims(), cpu_place); auto numel = out_t->numel(); for (auto i = 0; i < numel; ++i) { out_ptr[i] = 0; for (auto &var : vars) { auto &var_t = var->Get(); PADDLE_ENFORCE_EQ(var_t.numel(), numel, "should have the same dims"); out_ptr[i] += var_t.data()[i]; } } } else if (var0->IsType()) { auto *out_slr = out_var->GetMutable(); out_slr->mutable_rows()->clear(); out_slr->mutable_value()->mutable_data({{}}, cpu_place); std::vector inputs; inputs.reserve(vars.size()); for (auto &var : vars) { inputs.push_back(&var->Get()); } math::scatter::MergeAdd merge_add; auto dev_ctx = paddle::platform::CPUDeviceContext(); merge_add(dev_ctx, inputs, out_slr, false); } else { PADDLE_THROW("unsupported var type!"); } } std::unique_ptr Communicator::communicator_(nullptr); std::once_flag Communicator::init_flag_; void Communicator::SendThread() { VLOG(3) << "SendThread start!"; while (running_) { std::vector> task_futures; task_futures.reserve(send_varname_to_ctx_.size()); for (auto &iter : send_varname_to_queue_) { auto &var_name = iter.first; auto &var_queue = iter.second; if (var_queue->NotEmpty()) { // will block if queue is empty auto send_task = [this, &var_name, &var_queue] { VLOG(3) << "merge var " << var_name << " and send"; std::vector> vars; // TODO(qiao): need to be configurable const size_t max_merge_var_num = 20; size_t merged_var_num = 0; while (var_queue->Size() > 0 && merged_var_num < max_merge_var_num) { vars.push_back(var_queue->Pop()); merged_var_num++; } MergeVars(var_name, vars, send_scope_.get()); auto send_functor = distributed::ParameterSend(); auto &ctx = send_varname_to_ctx_.at(var_name); send_functor(ctx, *send_scope_, true); }; task_futures.emplace_back( send_threadpool_->enqueue(std::move(send_task))); } } for (auto &task_f : task_futures) { task_f.wait(); } } } void Communicator::RecvThread() { VLOG(3) << "RecvThread start!"; while (running_) { // parallel run recv graph std::vector> task_futures; task_futures.reserve(recv_varname_to_ctx_.size()); for (auto &iter : recv_varname_to_ctx_) { auto recv_task = [this, &iter] { auto &var_name = iter.first; VLOG(3) << "recv var " << var_name; auto recv_functor = distributed::ParameterRecv(); recv_functor(iter.second, *recv_scope_); }; task_futures.emplace_back( recv_threadpool_->enqueue(std::move(recv_task))); } for (auto &task : task_futures) { task.wait(); } // TODO(qiao) need to be configuable std::this_thread::sleep_for(std::chrono::milliseconds(200)); } } void Communicator::Send(const std::string &var_name, const framework::Scope &scope) { VLOG(3) << "communicator send " << var_name; // push var into send queue by var_name auto *grad_var = scope.FindVar(var_name); PADDLE_ENFORCE(grad_var->IsInitialized(), "grad var should be inited"); auto tmp_grad_var = std::make_shared(); framework::CopyVariable(*grad_var, tmp_grad_var.get()); send_varname_to_queue_[var_name]->Push(tmp_grad_var); } Communicator *Communicator::GetInstance() { return communicator_.get(); } void Communicator::Start() { running_ = true; // start send and recv thread send_thread_.reset( new std::thread(std::bind(&Communicator::SendThread, this))); recv_thread_.reset( new std::thread(std::bind(&Communicator::RecvThread, this))); } } // namespace distributed } // namespace operators } // namespace paddle