/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/elementwise/elementwise_mul_op.h" #include "paddle/fluid/operators/elementwise/elementwise_npu.h" #include "paddle/fluid/operators/npu_op_runner.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using NPUDeviceContext = platform::NPUDeviceContext; template static void ReduceDims(const framework::ExecutionContext& ctx, const aclrtStream& stream, const int axis, const framework::DDim& ddims, const framework::DDim& brd_ddims, const Tensor& in, Tensor* out) { std::vector axes; int64_t brd_size = brd_ddims.size(); int64_t org_size = ddims.size(); // int64_t diff = brd_dims.size() - dims.size(); for (int64_t i = 0; i < brd_size; ++i) { if (i < axis || i >= org_size + axis) { axes.push_back(i); continue; } if (brd_ddims[i] > ddims[i - axis]) { axes.push_back(i); } } // LOG(INFO) << "axes = " << framework::make_ddim(axes).to_str(); out->mutable_data(ctx.GetPlace()); const auto& runner = NpuOpRunner("ReduceSumD", {in}, {*out}, {{"axes", axes}, {"keep_dims", false}}); runner.Run(stream); } template class ElementwiseMulNPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto& dev_ctx = ctx.template device_context(); auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* out = ctx.Output("Out"); out->mutable_data(ctx.GetPlace()); int axis = ctx.Attr("axis"); bool direct_compute = false; auto x_dims = x->dims(); auto y_dims = y->dims(); axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis); if (x_dims.size() >= y_dims.size()) { direct_compute = x_dims.size() == (y_dims.size() + axis); } else { direct_compute = y_dims.size() == (x_dims.size() + axis); } auto stream = ctx.template device_context().stream(); if (direct_compute) { const auto& runner = NpuOpRunner("Mul", {*x, *y}, {*out}, {}); runner.Run(stream); } else { Tensor trans_x, trans_y; NpuElementWiseOpBroadcast(dev_ctx, x, y, axis, &trans_x, &trans_y); const auto& runner = NpuOpRunner("Mul", {trans_x, trans_y}, {*out}, {}); runner.Run(stream); } } }; template class ElementwiseMulGradNPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto& dev_ctx = ctx.template device_context(); auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); auto* dy = ctx.Output(framework::GradVarName("Y")); int axis = ctx.Attr("axis"); axis = (axis == -1 ? std::abs(x->dims().size() - y->dims().size()) : axis); auto stream = ctx.template device_context().stream(); Tensor trans_x, trans_y; NpuElementWiseOpBroadcast(dev_ctx, x, y, axis, &trans_x, &trans_y); if (dx) { if (dx->dims() == dout->dims()) { dx->mutable_data(ctx.GetPlace()); const auto& runner_dx = NpuOpRunner("Mul", {*dout, trans_y}, {*dx}, {}); runner_dx.Run(stream); } else { Tensor dx_temp(x->type()); dx_temp.Resize(trans_x.dims()); dx_temp.mutable_data(ctx.GetPlace()); const auto& runner_dx = NpuOpRunner("Mul", {*dout, trans_y}, {dx_temp}, {}); runner_dx.Run(stream); ReduceDims(ctx, stream, axis, dx->dims(), trans_x.dims(), dx_temp, dx); } } if (dy) { if (dy->dims() == dout->dims()) { dy->mutable_data(ctx.GetPlace()); const auto& runner_dy = NpuOpRunner("Mul", {trans_x, *dout}, {*dy}, {}); runner_dy.Run(stream); } else { Tensor dy_temp(y->type()); dy_temp.Resize(trans_y.dims()); dy_temp.mutable_data(ctx.GetPlace()); const auto& runner_dy = NpuOpRunner("Mul", {trans_x, *dout}, {dy_temp}, {}); runner_dy.Run(stream); ReduceDims(ctx, stream, axis, dy->dims(), trans_y.dims(), dy_temp, dy); } } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_NPU_KERNEL(elementwise_mul, ops::ElementwiseMulNPUKernel, ops::ElementwiseMulNPUKernel, #ifdef PADDLE_WITH_ASCEND_INT64 ops::ElementwiseMulNPUKernel, #endif ops::ElementwiseMulNPUKernel); REGISTER_OP_NPU_KERNEL( elementwise_mul_grad, ops::ElementwiseMulGradNPUKernel, ops::ElementwiseMulGradNPUKernel, #ifdef PADDLE_WITH_ASCEND_INT64 ops::ElementwiseMulGradNPUKernel, #endif ops::ElementwiseMulGradNPUKernel);