# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle from paddle.distributed.fleet.launch_utils import get_cluster, logger def get_cloud_cluster(args_node_ips, device_mode, devices_per_proc, args_port=6170): """ args_node_ips:string, device_mode:DeviceMode(IntEnum), device_per_proc:list, args_port: int """ #you can automatically get ip info while using paddlecloud multi nodes mode. node_ips = os.getenv("PADDLE_TRAINERS") assert node_ips is not None, "PADDLE_TRAINERS should not be None" node_ip = os.getenv("POD_IP") assert node_ip is not None, "POD_IP should not be None" node_rank = os.getenv("PADDLE_TRAINER_ID") assert node_rank is not None, "PADDLE_TRAINER_ID should not be None" paddle_ports_num = int(os.getenv("TRAINER_PORTS_NUM")) assert paddle_ports_num is not None, "TRAINER_PORTS_NUM should not be None" node_ips = node_ips.split(",") num_nodes = len(node_ips) node_rank = int(node_rank) if args_node_ips != "127.0.0.1" and args_node_ips != ",".join(node_ips): logger.warning( "Please NOTE: When using paddlecloud, cluster_node_ips is \ automatically got from PADDLE_TRAINERS(multi nodes) or POD_IP(single node).\ Your input cluster_node_ips: {} doesn't equals to IPs: {} from \ paddlecloud environment.".format(args_node_ips, node_ips)) # DISTRIBUTED_TRAINER_ENDPOINTS: new environment since paddlecloud 1.8.4 # e.g: DISTRIBUTED_TRAINER_ENDPOINTS="ip1:port1,ip1:port2,ip1:port3,ip1:port4,ip2:port5,ip2:port6,ip2:port7,ip2:port8" trainer_endpoints = os.getenv("DISTRIBUTED_TRAINER_ENDPOINTS") if trainer_endpoints is None: started_port = args_port if num_nodes > 1: try: paddle_port = int(os.getenv("PADDLE_PORT", "")) if paddle_ports_num >= len( devices_per_proc) and paddle_port != args_port: logger.warning("Use Cloud specified port:{}.".format( paddle_port)) started_port = paddle_port except Exception as e: print(e) pass if started_port is None: started_port = 6170 ports = [ x for x in range(started_port, started_port + len(devices_per_proc)) ] trainer_endpoints = [] for ip in node_ips: trainer_endpoints.append(["%s:%d" % (ip, port) for port in ports]) else: trainer_endpoints_ori = trainer_endpoints.split(",") trainer_endpoints = [] assert num_nodes * paddle_ports_num == len(trainer_endpoints_ori) for i in range(num_nodes): trainer_endpoints.append(trainer_endpoints_ori[ i * paddle_ports_num:(i + 1) * paddle_ports_num]) logger.debug("parsed from args: node_ips:{} \ node_ip:{} node_rank:{} trainer_endpoints:{}" .format(node_ips, node_ip, node_rank, trainer_endpoints)) cluster, pod = get_cluster(node_ips, node_ip, trainer_endpoints, device_mode, devices_per_proc) return cluster, cluster.pods[node_rank] def use_paddlecloud(): node_ips = os.getenv("PADDLE_TRAINERS") node_ip = os.getenv("POD_IP") node_rank = os.getenv("PADDLE_TRAINER_ID") paddle_ports_num = os.getenv("TRAINER_PORTS_NUM") if node_ips is None or node_ip is None or node_rank is None or paddle_ports_num is None: return False else: return True def get_trainers_num(): return int(os.getenv("PADDLE_TRAINERS_NUM", "1"))