# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle.fluid as fluid from paddle.fluid.framework import _test_eager_guard class TestImperativePartitialBackward(unittest.TestCase): def func_partitial_backward(self): with fluid.dygraph.guard(): x = np.random.randn(2, 4, 5).astype("float32") x = fluid.dygraph.to_variable(x) linear1 = fluid.dygraph.Linear(5, 10) linear2 = fluid.dygraph.Linear(5, 10) y = linear1(x[:, :2]) z = linear2(x[:, 2:]) loss = fluid.layers.reduce_mean(y) loss.backward() for param in linear1.parameters(): self.assertIsNotNone(param._grad_ivar()) for param in linear2.parameters(): self.assertIsNone(param._grad_ivar()) optimizer = fluid.optimizer.AdamOptimizer( parameter_list=(linear1.parameters() + linear2.parameters()) ) _, params_grads = optimizer.minimize(loss) self.assertListEqual( sorted([p.name for p in linear1.parameters()]), sorted([p_g[0].name for p_g in params_grads]), ) linear1.clear_gradients() linear2.clear_gradients() def test_partitial_backward(self): with _test_eager_guard(): self.func_partitial_backward() self.func_partitial_backward() if __name__ == '__main__': unittest.main()