from paddle.v2.fluid import framework as framework from . import core import collections __all__ = ['append_backward'] def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None): """ Traverse all ops in op_descs[begin_idx : end_idx], if any op has inputs/outputs named "old_name", rename it as 'new_name' """ if begin_idx is None: begin_idx = 0 if end_idx is None: end_idx = len(op_descs) for i in range(begin_idx, end_idx): op_desc = op_descs[i] if isinstance(op_desc, tuple): op_desc = op_desc[0] op_desc.rename_input(old_name, new_name) op_desc.rename_output(old_name, new_name) def _create_op_desc_(op_type, inputs, outputs, attrs): """ Create a C++ OpDesc object with specified inputs, outputs and attributes. """ op_desc = core.OpDesc() op_desc.set_type(op_type) for para, args in inputs.iteritems(): op_desc.set_input(para, args) for para, args in outputs.iteritems(): op_desc.set_output(para, args) for name, val in attrs.iteritems(): if isinstance(val, framework.Block): op_desc.set_block_attr(name, val.desc) else: op_desc.set_attr(name, val) return op_desc def _infer_var_data_type_(grad_var_name, block): """ Infer the data type of given grad variable """ grad_var = block.desc.find_var(grad_var_name.encode("ascii")) fwd_name = _strip_grad_suffix_(grad_var_name.encode("ascii")) if block.desc.has_var_recursive(fwd_name): fwd_var = block.desc.find_var_recursive(fwd_name.encode("ascii")) grad_var.set_dtype(fwd_var.dtype()) else: grad_var.set_dtype(core.DataType.FP32) def _all_in_set_(cands, s): """ Test if all elements of 'cands' are in set 's' """ if len(cands) == 0: return False for c in cands: if not c in s: return False return True def _strip_grad_suffix_(name): """ Strip the grad suffix from the given varibale name e.g. x@GRAD ==> x y@GRAD@RENAME@1 ==> y """ pos = name.find(core.grad_var_suffix()) return name[:pos] if pos != -1 else name def _append_grad_suffix_(name): """ Append grad suffix to the given variable name e.g. x ==> x@GRAD """ return name + core.grad_var_suffix() def _addup_repetitive_outputs_(op_descs): """ In backward part, an variable may be the output of more than one ops. In this case, the variable should be the accumulation of all the outputs. `sum_op`s are added to implement the accumulate. """ pending_sum_ops = [] var_rename_count = collections.defaultdict(int) renamed_vars = collections.defaultdict(list) for idx, op_desc in enumerate(op_descs): for var_name in op_desc.input_arg_names(): if len(renamed_vars[var_name]) > 1: pending_sum_ops.append( (_create_op_desc_("sum", {"X": renamed_vars[var_name]}, {"Out": [var_name]}, {}), idx)) renamed_vars[var_name] = [var_name] for var_name in op_desc.output_arg_names(): if var_name == core.empty_var_name( ) or var_name in op_desc.input_arg_names(): # empty variable or inplace op continue if len(renamed_vars[var_name]) == 0: # it's the first time we get the variable renamed_vars[var_name] = [var_name] else: if len(renamed_vars[var_name]) == 1: new_name = var_name + "@RENAME@" + \ str(var_rename_count[var_name]) var_rename_count[var_name] += 1 # rename original var_name renamed_vars[var_name][0] = new_name _rename_arg_(op_descs, var_name, new_name, 0, idx) _rename_arg_(pending_sum_ops, var_name, new_name) new_name = var_name + "@RENAME@" + \ str(var_rename_count[var_name]) var_rename_count[var_name] += 1 op_desc.rename_output(var_name, new_name) renamed_vars[var_name].append(new_name) for var_name, inputs in renamed_vars.iteritems(): if len(inputs) > 1: pending_sum_ops.append((_create_op_desc_( "sum", {"X": inputs}, {"Out": [var_name]}, {}), len(op_descs))) # sum_op descs are sorted according to their insert position for p in reversed(pending_sum_ops): op_descs.insert(p[1], p[0]) return op_descs def _remove_no_grad_branch_(op_descs, no_grad_set): """ Remove unnecessary grad ops A grad op can be removed in two cases: 1. all outputs of the grad op are in 'no_grad_set' 2. all grad inputs of the grad op are in 'no_grad_set' """ def _op_can_be_removed_(op_desc, no_grad_set): out_arg_names = op_desc.output_arg_names() if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set): return True if _all_in_set_( filter(lambda name: name.find(core.grad_var_suffix()) != -1, op_desc.input_arg_names()), no_grad_set): no_grad_set.union(out_arg_names) return True return False # Remove ops whose outputs are all in no_grad_dict op_descs = filter( lambda op_desc: not _op_can_be_removed_(op_desc, no_grad_set), op_descs) # Insert fill_zeros_like_op to_insert = [] for idx, op_desc in enumerate(op_descs): for arg in op_desc.input_arg_names(): if core.grad_var_suffix() in arg and arg in no_grad_set: to_insert.append((_create_op_desc_("fill_zeros_like", { "X": [_strip_grad_suffix_(arg)] }, {"Y": [arg]}, {}), idx)) map(lambda p: op_descs.insert(p[1], p[0]), reversed(to_insert)) return op_descs def _append_backward_ops_(target, block, target_block, no_grad_dict, grad_to_var, callback=None): """ Create all grad ops, and insert them into given block Args: target(Variable): the target variable of forward pass block(Block): the block where forward ops are target_block(Block): the block which is going to hold new generated grad ops no_grad_dict(dict): key(int) block index val(set) a set of varibale names. These varibales have no gradient grad_to_var(dict)(output argument): key(str): grad variable name val(str): corresponding forward variable name callback(callable object): a callable object used to decorate new generated grad ops """ if callback is None: def empty_callback(block, context): pass callback = empty_callback elif not hasattr(callback, '__call__'): raise ValueError("'callback' must be a callable object.") # grad_op_descs holds created grad_op, and will be appended to target_block grad_op_descs = [] program = block.program for op in reversed(block.ops): grad_sub_block_list = [] # If the op has its own sub-block, deal with the sub-block first if op.has_attr("sub_block"): sub_block = program.block(op.block_attr("sub_block")) grad_sub_block = program.create_block(parent_idx=sub_block.idx) _append_backward_ops_(target, sub_block, grad_sub_block, no_grad_dict, grad_to_var, callback) grad_sub_block_list.append(grad_sub_block.desc) # Getting op's corresponding grad_op grad_op_desc, op_grad_to_var = core.get_grad_op_desc( op.desc, no_grad_dict[block.idx], grad_sub_block_list) grad_op_descs.extend(grad_op_desc) grad_to_var.update(op_grad_to_var) grad_op_descs = _addup_repetitive_outputs_(grad_op_descs) grad_op_descs = _remove_no_grad_branch_(grad_op_descs, no_grad_dict[block.idx]) if target_block.idx == 0: grad_op_descs.insert( 0, _create_op_desc_("fill_constant", {}, { "Out": [_append_grad_suffix_(target.name)] }, {"shape": [1], "value": 1.0, "dtype": target.dtype})) # append op_desc in grad_op_descs to target_block for op_desc in grad_op_descs: new_op_desc = target_block.desc.append_op() new_op_desc.copy_from(op_desc) callback(block=target_block, context=grad_to_var) def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map): """ Create new variables required by backward pass. Args: block(Block): the block where new variables will be created start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created grad_to_var(dict): key(str): grad variable name val(str): corresponding forward variable name In most cases, this dict is generated by _append_backward_ops_() grad_info_map(dict)(output argument): key(str): forward variable name val(tuple): a tuple of (str, int), str is the corresponding grad name, int is the block index """ for op_idx in range(start_op_idx, block.desc.op_size()): op_desc = block.desc.op(op_idx) if op_desc.has_attr("sub_block"): sub_block = block.program.block(op_desc.block_attr("sub_block")) _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map) new_vars = set() # create new gradient variables for grad_var_name in op_desc.output_arg_names(): grad_var_name = grad_var_name.encode("ascii") if block.desc.has_var_recursive( grad_var_name) or grad_var_name == core.empty_var_name(): continue block.desc.var(grad_var_name) new_vars.add(grad_var_name) if not grad_to_var.has_key(grad_var_name): continue grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block) # infer_shape and infer_type op_desc.infer_var_type(block.desc) op_desc.infer_shape(block.desc) for arg in op_desc.output_arg_names(): if arg in new_vars: _infer_var_data_type_(arg, block) def append_backward(loss, parameter_list=None, no_grad_set=None, callback=None): """ Append backward part to main_program Args: loss(Variable): The variable generated by cost function. parameter_list(list): Parameters that need to be updated by optimizer. If None, it means all parameters need to be updated. no_grad_set(set): Variables that have no gradients in Block 0. If None, the set will be generated inside the function and contains all variables with `step_gradient=True` from all blocks. Return: (list[Variable]): list of (parameters, gradients) pair. """ assert isinstance(loss, framework.Variable) program = loss.block.program no_grad_dict = dict() if no_grad_set is None: assert isinstance(program, framework.Program) for block in program.blocks: assert isinstance(block, framework.Block) block_no_grad_set = set() for var in block.vars.itervalues(): assert isinstance(var, framework.Variable) if var.stop_gradient: block_no_grad_set.add(_append_grad_suffix_(var.name)) no_grad_dict[block.idx] = block_no_grad_set elif isinstance(no_grad_set, set): no_grad_dict = { 0: set([_append_grad_suffix_(name) for name in no_grad_set]) } else: raise ValueError("'no_grad_set' should be a set or None.") grad_info_map = dict() root_block = program.block(0) fwd_op_num = root_block.desc.op_size() current_block_idx = program.current_block_idx grad_to_var = dict() _append_backward_ops_(loss, root_block, root_block, no_grad_dict, grad_to_var, callback) _append_backward_vars_(root_block, fwd_op_num, grad_to_var, grad_info_map) program.current_block_idx = current_block_idx program.sync_with_cpp() if parameter_list is not None: parameters = parameter_list else: params = program.global_block().all_parameters() parameters = [param.name for param in params] params_and_grads = [] for param in parameters: if param not in grad_info_map: raise ValueError("param %s is not in map" % param) grad_info = grad_info_map[param] grad_block = grad_info[1] if not grad_block.has_var(grad_info[0]): raise ValueError("grad block[{0}] did not have grad var {1}".format( grad_info[1], grad_info[0])) # Get the param var from the global block param_var = program.global_block().var(param) grad_var = grad_block.var(grad_info[0]) if loss.block.has_var(grad_info[0]): params_and_grads.append((param_var, grad_var)) else: params_and_grads.append((param_var, None)) return params_and_grads