/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template using EigenMatrix = framework::EigenMatrix; template using EigenVector = framework::EigenVector; template using EigenScalar = framework::EigenScalar; template class AccuracyKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* inference = ctx.Input("Out"); auto* indices = ctx.Input("Indices"); auto* label = ctx.Input("Label"); auto* accuracy = ctx.Output("Accuracy"); auto* correct = ctx.Output("Correct"); float* correct_data = correct->mutable_data(ctx.GetPlace()); int* accuracy_data = accuracy->mutable_data(ctx.GetPlace()); const int64_t* indices_data = indices->data(); const int64_t* label_data = label->data(); size_t num_samples = inference->dims()[0]; size_t class_dim = inference->dims()[1]; *accuracy_data = 0.0f; if (num_samples == 0) { return; } int num_correct = 0; // assume inference is already the topk of the output for (size_t i = 0; i < num_samples; ++i) { PADDLE_ENFORCE_GE(label_data[i], 0, "label must >= 0"); for (size_t j = 0; j < class_dim; ++j) { if (indices_data[i * class_dim + j] == label_data[i]) { ++num_correct; break; } } } *correct_data = num_correct; *accuracy_data = static_cast(num_correct) / static_cast(num_samples); } }; } // namespace operators } // namespace paddle