# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import math from .. import unique_name __all__ = [ 'NoamDecay', 'PiecewiseDecay', 'NaturalExpDecay', 'ExponentialDecay', 'InverseTimeDecay', 'PolynomialDecay', 'CosineDecay' ] class LearningRateDecay(object): """ Base class of learning rate decay Define the common interface of an LearningRateDecay. User should not use this class directly, but need to use one of it's implementation. """ def __init__(self, begin=0, step=1, dtype='float32'): self.step_num = begin self.step_size = step self.dtype = dtype def __call__(self): lr = self.step() if isinstance(lr, float): lr = self.create_lr_var(lr) self.step_num += self.step_size return lr def create_lr_var(self, lr): """ convert lr from float to variable Args: lr: learning rate Returns: learning rate variable """ from .. import layers lr = layers.create_global_var( name=unique_name.generate("learning_rate"), shape=[1], value=float(lr), dtype=self.dtype, persistable=False) return lr def step(self): raise NotImplementedError() class PiecewiseDecay(LearningRateDecay): """ piecewise decay scheduler The algorithm can be described as the code below. .. code-block:: text boundaries = [10000, 20000] values = [1.0, 0.5, 0.1] if step < 10000: learning_rate = 1.0 elif 10000 <= step < 20000: learning_rate = 0.5 else: learning_rate = 0.1 Args: boundaries: A list of steps numbers. values: A list of learning rate values that will be picked during different step boundaries. begin: The begin step to initilize the self.step_num step: The step_size using when calculate the new step_num (Defalult is 1) dtype: The dtype used to create the learning rate variable Examples: .. code-block:: python import paddle.fluid as fluid boundaries = [10000, 20000] values = [1.0, 0.5, 0.1] with fluid.dygraph.guard(): optimizer = fluid.optimizer.SGD( learning_rate=fluid.dygraph.PiecewiseDecay(boundaries, values, 0) ) """ def __init__(self, boundaries, values, begin, step=1, dtype='float32'): super(PiecewiseDecay, self).__init__(begin, step, dtype) self.boundaries = boundaries self.values = values self.vars = [] for value in values: self.vars.append(value) def step(self): for i in range(len(self.boundaries)): if self.step_num < self.boundaries[i]: return self.vars[i] return self.create_lr_var(self.vars[len(self.values) - 1]) class NaturalExpDecay(LearningRateDecay): """ Applies natural exponential decay to the initial learning rate. .. code-block:: python if not staircase: decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps)) else: decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps)) Args: learning_rate: A scalar float32 value or a Variable. This will be the initial learning rate during training decay_steps: A Python `int32` number. decay_rate: A Python `float` number. staircase: Boolean. If set true, decay the learning rate every decay_steps. begin: A Python 'int32' number, the begin step (Default is 0) step: A Python 'int32' number, the step size (Default is 1) dtype: A Python 'str', the dtype used to create learning rate variable (Default is 'float32') Examples: .. code-block:: python import paddle.fluid as fluid base_lr = 0.1 with fluid.dygraph.guard(): sgd_optimizer = fluid.optimizer.SGD( learning_rate=fluid.dygraph.NaturalExpDecay( learning_rate=base_lr, decay_steps=10000, decay_rate=0.5, staircase=True)) """ def __init__(self, learning_rate, decay_steps, decay_rate, staircase=False, begin=0, step=1, dtype='float32'): super(NaturalExpDecay, self).__init__(begin, step, dtype) self.learning_rate = learning_rate self.decay_steps = decay_steps self.decay_rate = decay_rate self.staircase = staircase def step(self): from .. import layers div_res = self.create_lr_var(self.step_num / self.decay_steps) if self.staircase: div_res = layers.floor(div_res) decayed_lr = self.learning_rate * layers.exp(-1 * self.decay_rate * div_res) return decayed_lr class ExponentialDecay(LearningRateDecay): """ Applies exponential decay to the learning rate. When training a model, it is often recommended to lower the learning rate as the training progresses. By using this function, the learning rate will be decayed by 'decay_rate' every 'decay_steps' steps. .. code-block:: python if staircase == True: decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps) else: decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) Args: learning_rate(Variable|float): The initial learning rate. decay_steps(int): See the decay computation above. decay_rate(float): The decay rate. See the decay computation above. staircase(Boolean): If True, decay the learning rate at discrete intervals. Default: False begin(int): The begin step (default is 0) step(int): The step size (default is 1) dtype(str): The dtype used to create learning rate (default is 'float32') Examples: .. code-block:: python import paddle.fluid as fluid base_lr = 0.1 with fluid.dygraph.guard(): sgd_optimizer = fluid.optimizer.SGD( learning_rate=fluid.dygraph.ExponentialDecay( learning_rate=base_lr, decay_steps=10000, decay_rate=0.5, staircase=True)) """ def __init__(self, learning_rate, decay_steps, decay_rate, staircase=False, begin=0, step=1, dtype='float32'): super(ExponentialDecay, self).__init__(begin, step, dtype) self.learning_rate = learning_rate self.decay_steps = decay_steps self.decay_rate = decay_rate self.staircase = staircase def step(self): from .. import layers div_res = self.create_lr_var(self.step_num / self.decay_steps) if self.staircase: div_res = layers.floor(div_res) decayed_lr = self.learning_rate * (self.decay_rate**div_res) return decayed_lr class InverseTimeDecay(LearningRateDecay): """ Applies inverse time decay to the initial learning rate. When training a model, it is often recommended to lower the learning rate as the training progresses. By using this function, an inverse decay function will be applied to the initial learning rate. >>> if staircase == True: >>> decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step)) >>> else: >>> decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step) Args: learning_rate(Variable|float): The initial learning rate. decay_steps(int): See the decay computation above. decay_rate(float): The decay rate. See the decay computation above. staircase(Boolean): If True, decay the learning rate at discrete intervals. Default: False begin(int): The begin step (default is 0) step(int): The step size (default is 1) dtype(str): The dtype used to create learning rate (default is 'float32') Examples: .. code-block:: python import paddle.fluid as fluid base_lr = 0.1 with fluid.dygraph.guard(): sgd_optimizer = fluid.optimizer.SGD( learning_rate=fluid.dygraph.InverseTimeDecay( learning_rate=base_lr, decay_steps=10000, decay_rate=0.5, staircase=True)) """ def __init__(self, learning_rate, decay_steps, decay_rate, staircase=False, begin=0, step=1, dtype='float32'): super(InverseTimeDecay, self).__init__(begin, step, dtype) self.learning_rate = learning_rate self.decay_steps = decay_steps self.decay_rate = decay_rate self.staircase = staircase def step(self): from .. import layers div_res = self.create_lr_var(self.step_num / self.decay_steps) if self.staircase: div_res = layers.floor(div_res) decayed_lr = self.learning_rate / (1 + self.decay_rate * div_res) return decayed_lr class PolynomialDecay(LearningRateDecay): """ Applies polynomial decay to the initial learning rate. .. code-block:: text if cycle: decay_steps = decay_steps * ceil(global_step / decay_steps) else: global_step = min(global_step, decay_steps) decayed_learning_rate = (learning_rate - end_learning_rate) * (1 - global_step / decay_steps) ^ power + end_learning_rate Args: learning_rate(Variable|float32): A scalar float32 value or a Variable. This will be the initial learning rate during training. decay_steps(int32): A Python `int32` number. end_learning_rate(float): A Python `float` number. power(float): A Python `float` number. cycle(bool): If set true, decay the learning rate every decay_steps. begin(int): The begin step (default is 0) step(int): The step size (default is 1) dtype(str): The dtype used to create learning rate (default is 'float32') Examples: .. code-block:: python import paddle.fluid as fluid start_lr = 0.01 total_step = 5000 end_lr = 0 with fluid.dygraph.guard(): optimizer = fluid.optimizer.SGD( learning_rate = fluid.dygraph.PolynomialDecay( start_lr, total_step, end_lr, power=1.0) ) """ def __init__(self, learning_rate, decay_steps, end_learning_rate=0.0001, power=1.0, cycle=False, begin=0, step=1, dtype='float32'): super(PolynomialDecay, self).__init__(begin, step, dtype) self.learning_rate = learning_rate self.decay_steps = decay_steps self.end_learning_rate = end_learning_rate self.power = power self.cycle = cycle def step(self): from .. import layers tmp_step_num = self.step_num tmp_decay_steps = self.decay_steps if self.cycle: div_res = layers.ceil( self.create_lr_var(tmp_step_num / float(self.decay_steps))) if tmp_step_num == 0: div_res = self.create_lr_var(1.0) tmp_decay_steps = self.decay_steps * div_res else: tmp_step_num = self.create_lr_var(tmp_step_num if tmp_step_num < self.decay_steps else self.decay_steps) decayed_lr = (self.learning_rate - self.end_learning_rate) * \ ((1 - tmp_step_num / tmp_decay_steps) ** self.power) + self.end_learning_rate return decayed_lr class CosineDecay(LearningRateDecay): """ Applies cosine decay to the learning rate. when training a model, it is often recommended to lower the learning rate as the training progresses. By using this function, the learning rate will be decayed by following cosine decay strategy. .. math:: decayed\_lr = learning\_rate * 0.5 * (math.cos * (epoch * \\frac{math.pi}{epochs} ) + 1) Args: learning_rate(Variable|float): The initial learning rate. step_each_epoch(int): the number of steps in an epoch. epochs(int): the number of epochs. begin(int): The begin step (default is 0). step(int): The step size (default is 1). dtype(str): The dtype used to create learning rate (default is 'float32'). Examples: .. code-block:: python base_lr = 0.1 with fluid.dygraph.guard(): optimizer = fluid.optimizer.SGD( learning_rate = fluid.dygraph.CosineDecay( base_lr, 10000, 120) ) """ def __init__(self, learning_rate, step_each_epoch, epochs, begin=0, step=1, dtype='float32'): super(CosineDecay, self).__init__(begin, step, dtype) self.learning_rate = learning_rate self.step_each_epoch = step_each_epoch self.epochs = epochs def step(self): from .. import layers cur_epoch = layers.floor( self.create_lr_var(self.step_num / self.step_each_epoch)) decayed_lr = self.learning_rate * 0.5 * ( layers.cos(cur_epoch * math.pi / self.epochs) + 1) return decayed_lr class NoamDecay(LearningRateDecay): """ Noam decay method. The numpy implementation of noam decay as follows. .. code-block:: python import numpy as np # set hyper parameters d_model = 2 current_steps = 20 warmup_steps = 200 # compute lr_value = np.power(d_model, -0.5) * np.min([ np.power(current_steps, -0.5), np.power(warmup_steps, -1.5) * current_steps]) Please reference `attention is all you need `_. Args: d_model(Variable): The dimensionality of input and output of model. warmup_steps(Variable): A super parameter. begin(int): The begin step (default is 0) step(int): The step size (default is 1) dtype(str): The dtype used to create learning rate (default is 'float32') Examples: .. code-block:: python import paddle.fluid as fluid warmup_steps = 100 learning_rate = 0.01 with fluid.dygraph.guard(): optimizer = fluid.optimizer.SGD( learning_rate = fluid.dygraph.NoamDecay( 1/(warmup_steps *(learning_rate ** 2)), warmup_steps) ) """ def __init__(self, d_model, warmup_steps, begin=1, step=1, dtype='float32'): super(NoamDecay, self).__init__(begin, step, dtype) self.d_model = d_model self.warmup_steps = warmup_steps def step(self): from .. import layers a = self.create_lr_var(self.step_num**-0.5) b = self.create_lr_var((self.warmup_steps**-1.5) * self.step_num) lr_value = (self.d_model**-0.5) * layers.elementwise_min(a, b) return lr_value