/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef __NVCC__ #include "cub/cub.cuh" #endif #ifdef __HIPCC__ #include namespace cub = hipcub; #endif #include "paddle/fluid/operators/group_norm_op.h" #include "paddle/fluid/platform/cuda_device_function.h" #include "paddle/fluid/platform/cuda_primitives.h" namespace paddle { namespace operators { using DataLayout = framework::DataLayout; enum GroupNormKernelFlags { kHasScale = 1, kHasBias = 2 }; #define CHECK_CASE(i, flags, kernel_name, ...) \ if (i == flags) { \ kernel_name<<>>(__VA_ARGS__); \ } // 0 for no scale, no bias // 1 for has scale, no bias // 2 for no scale, has bias // 3 for has scale, has bias #define UNROLL_ALL_CASES(flags, kernel_name, ...) \ CHECK_CASE(0, flags, kernel_name, __VA_ARGS__) \ CHECK_CASE(1, flags, kernel_name, __VA_ARGS__) \ CHECK_CASE(2, flags, kernel_name, __VA_ARGS__) \ CHECK_CASE(3, flags, kernel_name, __VA_ARGS__) template __device__ __inline__ void CudaAtomicAddWithWarp(T* sum, T value) { typedef cub::WarpReduce WarpReduce; typename WarpReduce::TempStorage temp_storage; value = WarpReduce(temp_storage).Sum(value); if (cub::LaneId() == 0) platform::CudaAtomicAdd(sum, value); } template __global__ void GroupNormForwardGetMeanAndVar(const T* x, int N, int C, int W, int imsize, int groups, int group_size, T* mean, T* var, const DataLayout data_layout) { int gid = blockIdx.y; int cid = blockIdx.x; int bid = blockIdx.z; int H = imsize / W; int number = min(group_size, static_cast(C - gid * group_size)); int ccid = gid * group_size + cid; if (ccid >= C) return; T x_mean = 0, x_var = 0; for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) { T val; if (data_layout == DataLayout::kNCHW) { val = x[(bid * C + ccid) * imsize + imid]; } else { int hid = imid / W; int wid = imid % W; val = x[(bid * H + hid) * W * C + wid * C + ccid]; } x_mean += val; x_var += val * val; } x_mean /= number * imsize; x_var /= number * imsize; CudaAtomicAddWithWarp(&mean[bid * groups + gid], x_mean); CudaAtomicAddWithWarp(&var[bid * groups + gid], x_var); } template __global__ void GroupNormForward(const T* x, const T* mean, const T* var, const T* scale, const T* bias, int N, int C, int W, int imsize, int groups, int group_size, T epsilon, T* y, T* real_var, const DataLayout data_layout) { int gid = blockIdx.y; int cid = blockIdx.x; int bid = blockIdx.z; int H = imsize / W; int ccid = gid * group_size + cid; if (ccid >= C) return; T x_mean = mean[bid * groups + gid]; T x_var = var[bid * groups + gid]; x_var = x_var - x_mean * x_mean; T var_inv = 1.0 / sqrt(x_var + epsilon); if (cid == 0 && threadIdx.x == 0) real_var[bid * groups + gid] = x_var; for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) { T val; int hid, wid; if (data_layout == DataLayout::kNCHW) { val = x[(bid * C + ccid) * imsize + imid]; } else { hid = imid / W; wid = imid % W; val = x[(bid * H + hid) * W * C + wid * C + ccid]; } val = (val - x_mean) * var_inv; if (flags & kHasScale) val *= scale[gid * group_size + cid]; if (flags & kHasBias) val += bias[gid * group_size + cid]; if (data_layout == DataLayout::kNCHW) { y[(bid * C + ccid) * imsize + imid] = val; } else { y[(bid * H + hid) * W * C + wid * C + ccid] = val; } } } template class GroupNormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { const std::string data_layout_str = ctx.Attr("data_layout"); const DataLayout data_layout = framework::StringToDataLayout(data_layout_str); const float epsilon = ctx.Attr("epsilon"); auto* scale = ctx.Input("Scale"); auto* bias = ctx.Input("Bias"); auto* x = ctx.Input("X"); auto* y = ctx.Output("Y"); auto* mean = ctx.Output("Mean"); auto* var = ctx.Output("Variance"); const auto groups = ctx.Attr("groups"); const auto x_dims = x->dims(); const int C = (data_layout == DataLayout::kNCHW ? x_dims[1] : x_dims[x_dims.size() - 1]); const int group_size = (C - 1) / groups + 1; const int W = (data_layout == DataLayout::kNCHW ? x_dims[x_dims.size() - 1] : x_dims[x_dims.size() - 2]); y->mutable_data(ctx.GetPlace()); mean->mutable_data(ctx.GetPlace()); var->mutable_data(ctx.GetPlace()); math::SetConstant set_zero; auto& dev_ctx = ctx.template device_context(); Tensor temp_var; temp_var.mutable_data(var->dims(), ctx.GetPlace()); set_zero(dev_ctx, mean, static_cast(0)); set_zero(dev_ctx, &temp_var, static_cast(0)); auto* x_data = x->data(); auto* y_data = y->data(); auto* mean_data = mean->data(); auto* var_data = var->data(); auto* temp_var_data = temp_var.data(); const T* scale_data = nullptr; if (scale) scale_data = scale->data(); const T* bias_data = nullptr; if (bias) bias_data = bias->data(); int imsize = (data_layout == DataLayout::kNCHW ? x_dims[2] * x_dims[3] : x_dims[1] * x_dims[2]); #ifdef __HIPCC__ int block_size = std::max(std::min(256, imsize), 64); #else int block_size = std::min(1024, imsize); #endif dim3 grid(group_size, groups, x_dims[0]); dim3 threads(block_size, 1, 1); GroupNormForwardGetMeanAndVar<<>>( x_data, x_dims[0], C, W, imsize, groups, group_size, mean_data, temp_var_data, data_layout); int flags = (scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias; UNROLL_ALL_CASES(flags, GroupNormForward, x_data, mean_data, temp_var_data, scale_data, bias_data, x_dims[0], C, W, imsize, groups, group_size, epsilon, y_data, var_data, data_layout); } }; template __global__ void GroupNormBackwardGetMeanAndVar( const T* x, const T* scale, const T* bias, const T* d_y, int N, int C, int W, int imsize, int groups, int group_size, T epsilon, T* d_mean, T* d_var, T* d_scale, T* d_bias, const DataLayout data_layout) { int gid = blockIdx.y; int cid = blockIdx.x; int bid = blockIdx.z; int H = imsize / W; int number = min(group_size, static_cast(C - gid * group_size)); int ccid = gid * group_size + cid; if (ccid >= C) return; T x_scale = (flags & kHasScale) ? scale[ccid] : 1; T x_bias = (flags & kHasBias) ? bias[ccid] : 0; T x_scale_inv = 0; if (x_scale != 0) x_scale_inv = 1.0 / x_scale; T d_mean_data = 0, d_var_data = 0, d_scale_data = 0, d_bias_data = 0; for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) { T val, dval; if (data_layout == DataLayout::kNCHW) { val = x[(bid * C + ccid) * imsize + imid] - x_bias; dval = d_y[(bid * C + ccid) * imsize + imid]; } else { int hid = imid / W; int wid = imid % W; val = x[(bid * H + hid) * W * C + wid * C + ccid] - x_bias; dval = d_y[(bid * H + hid) * W * C + wid * C + ccid]; } d_var_data += val * dval; d_mean_data += dval * x_scale; val = val * x_scale_inv; d_bias_data += dval; d_scale_data += val * dval; } CudaAtomicAddWithWarp(&(d_mean[bid * groups + gid]), d_mean_data); CudaAtomicAddWithWarp(&(d_var[bid * groups + gid]), d_var_data); if (flags & kHasScale) CudaAtomicAddWithWarp(&(d_scale[ccid]), d_scale_data); if (flags & kHasBias) CudaAtomicAddWithWarp(&(d_bias[ccid]), d_bias_data); } template __global__ void GroupNormBackward(const T* x, const T* d_y, const T* scale, const T* bias, const T* var, const T* d_mean, const T* d_var, int N, int C, int W, int imsize, int groups, int group_size, T epsilon, T* d_x, const DataLayout data_layout) { int gid = blockIdx.y; int cid = blockIdx.x; int bid = blockIdx.z; int H = imsize / W; int number = min(group_size, static_cast(C - gid * group_size)); int ccid = gid * group_size + cid; if (ccid >= C) return; T x_var = var[bid * groups + gid]; T d_x_mean = d_mean[bid * groups + gid]; T d_x_var = d_var[bid * groups + gid]; T x_var_inv = 1.0 / sqrt(x_var + epsilon); T number_inv = 1.0 / (number * imsize); T x_scale = (flags & kHasScale) ? scale[ccid] : 1; T x_bias = (flags & kHasBias) ? bias[ccid] : 0; T x_scale_inv = 0; if (x_scale != 0) x_scale_inv = 1.0 / x_scale; for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) { if (data_layout == DataLayout::kNCHW) { T tmp = x[(bid * C + ccid) * imsize + imid]; T v_y = (tmp - x_bias) * x_scale_inv; T dly = d_y[(bid * C + ccid) * imsize + imid]; d_x[(bid * C + ccid) * imsize + imid] = x_var_inv * (dly * x_scale - number_inv * d_x_var * v_y - number_inv * d_x_mean); } else { int hid = imid / W; int wid = imid % W; T tmp = x[(bid * H + hid) * W * C + wid * C + ccid]; T v_y = (tmp - x_bias) * x_scale_inv; T dly = d_y[(bid * H + hid) * W * C + wid * C + ccid]; d_x[(bid * H + hid) * W * C + wid * C + ccid] = x_var_inv * (dly * x_scale - number_inv * d_x_var * v_y - number_inv * d_x_mean); } } } template class GroupNormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { const std::string data_layout_str = ctx.Attr("data_layout"); const DataLayout data_layout = framework::StringToDataLayout(data_layout_str); const float epsilon = ctx.Attr("epsilon"); auto* x = ctx.Input("Y"); auto* var = ctx.Input("Variance"); auto* scale = ctx.Input("Scale"); auto* bias = ctx.Input("Bias"); auto* d_y = ctx.Input(framework::GradVarName("Y")); const auto groups = ctx.Attr("groups"); // init output auto* d_x = ctx.Output(framework::GradVarName("X")); auto* d_scale = ctx.Output(framework::GradVarName("Scale")); auto* d_bias = ctx.Output(framework::GradVarName("Bias")); const auto& x_dims = x->dims(); const int C = (data_layout == DataLayout::kNCHW ? x_dims[1] : x_dims[x_dims.size() - 1]); const int group_size = (C - 1) / groups + 1; const int W = (data_layout == DataLayout::kNCHW ? x_dims[x_dims.size() - 1] : x_dims[x_dims.size() - 2]); d_x->mutable_data(ctx.GetPlace()); math::SetConstant set_zero; auto& dev_ctx = ctx.template device_context(); Tensor temp_var; temp_var.mutable_data(var->dims(), ctx.GetPlace()); set_zero(dev_ctx, &temp_var, static_cast(0)); T* temp_var_data = temp_var.data(); Tensor temp_mean; temp_mean.mutable_data(var->dims(), ctx.GetPlace()); set_zero(dev_ctx, &temp_mean, static_cast(0)); T* temp_mean_data = temp_mean.data(); auto* x_data = x->data(); T* d_x_data = nullptr; if (d_x) d_x_data = d_x->data(); auto* y_data = d_y->data(); auto* var_data = var->data(); T* d_scale_data = nullptr; if (d_scale) { d_scale->mutable_data(ctx.GetPlace()); set_zero(dev_ctx, d_scale, static_cast(0)); d_scale_data = d_scale->data(); } T* d_bias_data = nullptr; if (d_bias) { d_bias->mutable_data(ctx.GetPlace()); set_zero(dev_ctx, d_bias, static_cast(0)); d_bias_data = d_bias->data(); } const T* scale_data = nullptr; if (scale) scale_data = scale->data(); const T* bias_data = nullptr; if (bias) bias_data = bias->data(); int imsize = (data_layout == DataLayout::kNCHW ? x_dims[2] * x_dims[3] : x_dims[1] * x_dims[2]); #ifdef __HIPCC__ int block_size = std::max(std::min(256, imsize), 64); #else int block_size = std::min(1024, imsize); #endif dim3 grid(group_size, groups, x_dims[0]); dim3 threads(block_size, 1, 1); int flags = (scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias; UNROLL_ALL_CASES(flags, GroupNormBackwardGetMeanAndVar, x_data, scale_data, bias_data, y_data, x_dims[0], C, W, imsize, groups, group_size, epsilon, temp_mean_data, temp_var_data, d_scale_data, d_bias_data, data_layout); if (d_x_data != nullptr) { UNROLL_ALL_CASES(flags, GroupNormBackward, x_data, y_data, scale_data, bias_data, var_data, temp_mean_data, temp_var_data, x_dims[0], C, W, imsize, groups, group_size, epsilon, d_x_data, data_layout); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( group_norm, ops::GroupNormKernel, ops::GroupNormKernel); REGISTER_OP_CUDA_KERNEL( group_norm_grad, ops::GroupNormGradKernel, ops::GroupNormGradKernel);