/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/reduce_ops/reduce_op.h" #include "paddle/fluid/operators/triangular_solve_op.h" namespace paddle { namespace operators { template struct MatrixReduceSumFunctor { void operator()(const Tensor& in, Tensor* out, const framework::ExecutionContext& ctx) { // For example: in's dim = [5, 3, 2, 7, 3] ; out's dim = [3, 1, 7, 3] // out_reduce_dim should be [0, 2] const std::vector in_dims = framework::vectorize(in.dims()); auto in_size = in_dims.size(); const std::vector out_dims = framework::vectorize(out->dims()); auto out_size = out_dims.size(); std::vector out_bst_dims(in_size); std::fill(out_bst_dims.data(), out_bst_dims.data() + in_size - out_size, 1); std::copy(out_dims.data(), out_dims.data() + out_size, out_bst_dims.data() + in_size - out_size); std::vector out_reduce_dims; for (size_t idx = 0; idx <= in_size - 3; idx++) { if (in_dims[idx] != 1 && out_bst_dims[idx] == 1) { out_reduce_dims.push_back(idx); } } gpuStream_t stream = ctx.cuda_device_context().stream(); TensorReduceFunctorImpl>( in, out, kps::IdentityFunctor(), out_reduce_dims, stream); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( triangular_solve, ops::TriangularSolveKernel, ops::TriangularSolveKernel); REGISTER_OP_CUDA_KERNEL( triangular_solve_grad, ops::TriangularSolveGradKernel, ops::TriangularSolveGradKernel);