// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/operators/diag_op.h" #include "paddle/fluid/operators/eigen/eigen_function.h" #include "paddle/fluid/operators/elementwise/elementwise_op_function.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/for_range.h" #include "paddle/phi/core/ddim.h" #include "paddle/phi/kernels/funcs/blas/blas.h" #include "paddle/phi/kernels/funcs/complex_functors.h" #include "paddle/phi/kernels/funcs/lapack/lapack_function.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace paddle { namespace operators { namespace math { using Tensor = framework::Tensor; using InTensors = std::vector; using OutTensors = std::vector; using OpName = std::string; template using EigenVector = framework::EigenVector; template void LapackSvd(const T* X, T* U, T* VH, T* S, int rows, int cols, int full = false) { char jobz = full ? 'A' : 'S'; int mx = std::max(rows, cols); int mn = std::min(rows, cols); T* a = const_cast(X); int lda = rows; int ldu = rows; int ldvt = full ? cols : mn; int lwork = full ? (4 * mn * mn + 6 * mn + mx) : (4 * mn * mn + 7 * mn); std::vector work(lwork); std::vector iwork(8 * mn); int info; phi::funcs::lapackSvd(jobz, rows, cols, a, lda, S, U, ldu, VH, ldvt, work.data(), lwork, iwork.data(), &info); if (info < 0) { PADDLE_THROW(platform::errors::InvalidArgument( "This %s-th argument has an illegal value", info)); } if (info > 0) { PADDLE_THROW(platform::errors::InvalidArgument( "DBDSDC/SBDSDC did not converge, updating process failed. May be you " "passes a invalid matrix.")); } } template void BatchSvd(const T* X, T* U, T* VH, T* S, int rows, int cols, int batches, int full = false) { // NOTE: this function is row major, because this function called the lapack. int stride = rows * cols; int k = std::min(rows, cols); int stride_u = full ? rows * rows : k * rows; int stride_v = full ? cols * cols : k * cols; for (int i = 0; i < batches; ++i) { LapackSvd(X + i * stride, U + i * stride_u, VH + i * stride_v, S + i * k, rows, cols, full); } return; } template struct PowFunctor { PowFunctor(const T* input, T* output, int64_t numel, T exp) : input_(input), output_(output), numel_(numel), exp_(exp) {} HOSTDEVICE void operator()(int64_t idx) const { output_[idx] = pow(input_[idx], exp_); } const T* input_; T* output_; int64_t numel_; T exp_; }; template struct RealMulComplexFunctor { // x: complex number (a+bj) // y: complex number (c+0j) pretend to be a real number // out: complex number (ac+bcj) inline HOSTDEVICE T operator()(T x, T y) { PADDLE_ENFORCE_LT( y.imag, 1e-6, platform::errors::InvalidArgument("The image part of y must to be 0" "but got [%d]", y.imag)); return platform::complex>(x.real * y.real, x.imag * y.real); } }; static std::vector GetBroadcastShape(InTensors ins) { PADDLE_ENFORCE_EQ( ins.size(), 2, platform::errors::InvalidArgument("GetBroadcastShape Receive 2 tensors" "but got [%d]", ins.size())); auto x_dim = ins[0]->dims(); auto y_dim = ins[1]->dims(); std::vector broadcast_shape = (x_dim.size() > y_dim.size() ? phi::vectorize(x_dim) : phi::vectorize(y_dim)); int rank_min = std::min(x_dim.size(), y_dim.size()); int rank_x = x_dim.size(); int rank_y = y_dim.size(); int final_rank = broadcast_shape.size(); for (int i = 1; i <= rank_min; ++i) { if (x_dim[rank_x - i] == y_dim[rank_y - i]) { broadcast_shape[final_rank - i] = x_dim[rank_x - i]; continue; } if (x_dim[rank_x - i] == 1) { broadcast_shape[final_rank - i] = y_dim[rank_y - i]; continue; } if (y_dim[rank_y - i] == 1) { broadcast_shape[final_rank - i] = x_dim[rank_x - i]; continue; } PADDLE_THROW(platform::errors::InvalidArgument( "Wrong Input Shape in broadcast operator: " "Input(X)'s shape must follow the broadcast rule with Input(Y)'s " "shape, but received [%s] (X) vs [%s] (Y).", x_dim, y_dim)); } return broadcast_shape; } static inline framework::DDim ComputeAndCheckShapeForConcatOp( const bool is_runtime, const std::vector& inputs_dims, const size_t axis) { const size_t n = inputs_dims.size(); auto out_dims = inputs_dims[0]; size_t in_zero_dims_size = out_dims.size(); for (size_t i = 1; i < n; i++) { PADDLE_ENFORCE_EQ(inputs_dims[i].size(), out_dims.size(), platform::errors::InvalidArgument( "The shape of input[0] and input[%d] " "is expected to be equal." "But received input[0]'s shape = " "[%s], input[%d]'s shape = [%s].", i, inputs_dims[0], i, inputs_dims[i])); for (size_t j = 0; j < in_zero_dims_size; j++) { if (j == axis) { if (is_runtime) { out_dims[axis] += inputs_dims[i][j]; } else { if (inputs_dims[i][j] == -1 || out_dims[j] == -1) { out_dims[axis] = -1; } else { out_dims[axis] += inputs_dims[i][j]; } } } else { bool check_shape = is_runtime || (inputs_dims[0][j] > 0 && inputs_dims[i][j] > 0); if (check_shape) { // check all shape in run time PADDLE_ENFORCE_EQ(inputs_dims[0][j], inputs_dims[i][j], platform::errors::InvalidArgument( "The %d-th dimension of input[0] and input[%d] " "is expected to be equal." "But received input[0]'s shape = " "[%s], input[%d]'s shape = [%s].", j, i, inputs_dims[0], i, inputs_dims[i])); } if (!is_runtime && out_dims[j] == -1 && inputs_dims[i][j] > 0) { out_dims[j] = inputs_dims[i][j]; } } } } return out_dims; } static inline int64_t ComputeAxisForConcatOp(int64_t axis, int64_t rank) { PADDLE_ENFORCE_EQ( axis >= -rank && axis < rank, true, platform::errors::InvalidArgument( "The axis is expected to be in range of [%d, %d), but got %d", -rank, rank, axis)); if (axis < 0) { axis = axis + rank; } return axis > 0 ? axis : 0; } // Prepared for the broadcast operation static std::vector get_broadcast_batch_portion( std::vector x, std::vector y) { size_t size_x = x.size(); size_t size_y = y.size(); size_t size = std::max(size_x, size_y); std::vector batchPortion(size); ptrdiff_t i = (ptrdiff_t)size - 1; for (; i >= 0; --i) { ptrdiff_t offset = size - i - 1; ptrdiff_t dim_x = size_x - offset - 1; ptrdiff_t dim_y = size_y - offset - 1; int64_t x_size = (dim_x >= 0) ? x[dim_x] : 1; int64_t y_size = (dim_y >= 0) ? y[dim_y] : 1; PADDLE_ENFORCE_EQ( (x_size == y_size || x_size == 1 || y_size == 1), true, platform::errors::PreconditionNotMet( "The size of tensor x (%d) must match the size of tensor y " "(%d) at non-singleton dimension %d.", x_size, y_size, i)); batchPortion[i] = x_size != 1 ? x_size : y_size; } return batchPortion; } #define DITO_TRANSPOSE_RANK_CASE(N) \ case N: { \ phi::funcs::Transpose trans; \ trans(dev_ctx, x, &ret, axis); \ break; \ } #define DITO_SLICE_RANK_CASE(N) \ case N: { \ EigenSliceWrapper(&x, offset, extends, &ret); \ break; \ } template struct DiagAndFillFunctor { DiagAndFillFunctor(const int m, const int n, const int num_lower_diags, const int num_upper_diags, const ValueType* scale, const T* input, T* output) : m_(m), n_(n), num_lower_diags_(num_lower_diags), num_upper_diags_(num_upper_diags), scale_(scale), input_(input), output_(output) {} HOSTDEVICE void operator()(size_t index) const { const int col = index % n_; const int row = (index / n_) % m_; const int band_start = (num_lower_diags_ < 0 ? 0 : row - num_lower_diags_); const int band_end = (num_upper_diags_ < 0 ? n_ : row + num_upper_diags_ + 1); if (col < band_start || col >= band_end) { output_[index] = input_[index]; } else if (col == band_end - 1) { output_[index] = static_cast(scale_[index % m_]); } else { output_[index] = input_[index]; } } private: const int m_, n_, num_lower_diags_, num_upper_diags_; const ValueType* scale_; const T* input_; T* output_; }; template struct DeviceIndependenceTensorOperations { // 1. Device indenpendence, for kernel reuse. // 2. Input and output is always tensor type. // 3. output Tensor is alway allocated // 4. Basic Tensor operator is supported // 5. The Reused Operator Kernel should only be considered as // a wrap function using NameInTensorMap = std::map>; using NameOutTensor = std::vector; explicit DeviceIndependenceTensorOperations( const framework::ExecutionContext& context) : context(context) {} framework::Tensor Pow(const framework::Tensor& x, T exp) { framework::Tensor out; auto for_range = GetForRange(x.numel()); int numel = x.numel(); PowFunctor functor(x.data(), out.mutable_data(x.dims(), x.place()), numel, exp); for_range(functor); return out; } framework::Tensor Matmul(const framework::Tensor& mat_a, const framework::Tensor& mat_b, bool trans_a = false, bool trans_b = false) { framework::Tensor ret; auto a_dim = mat_a.dims(); auto b_dim = mat_b.dims(); std::vector x_vec = phi::vectorize(a_dim); x_vec[x_vec.size() - 2] = a_dim[a_dim.size() - (trans_a ? 1 : 2)]; x_vec[x_vec.size() - 1] = b_dim[b_dim.size() - (trans_b ? 2 : 1)]; ret.Resize(phi::make_ddim(x_vec)); ret.mutable_data(context.GetPlace()); auto blas = GetBlas(); auto mat_a_discrib = phi::funcs::CreateMatrixDescriptor(a_dim, 0, trans_a); auto mat_b_discrib = phi::funcs::CreateMatrixDescriptor(b_dim, 0, trans_b); blas.MatMul(mat_a, mat_a_discrib, mat_b, mat_b_discrib, T(1.0), &ret, T(0.0)); return ret; } framework::Tensor Transpose(const framework::Tensor& x) { // transpose the last two dimision framework::Tensor ret; auto x_dim = x.dims(); auto x_vec = phi::vectorize(x_dim); int rank = x_vec.size(); std::swap(x_vec[rank - 1], x_vec[rank - 2]); std::vector out_shape = x_vec; std::vector axis(rank); for (int i = 0; i < rank; ++i) { axis[i] = i; } std::swap(axis[rank - 1], axis[rank - 2]); auto& dev_ctx = context.template device_context(); ret.Resize(phi::make_ddim(x_vec)); ret.mutable_data(context.GetPlace()); switch (rank) { DITO_TRANSPOSE_RANK_CASE(2); DITO_TRANSPOSE_RANK_CASE(3); DITO_TRANSPOSE_RANK_CASE(4); DITO_TRANSPOSE_RANK_CASE(5); DITO_TRANSPOSE_RANK_CASE(6); default: { PADDLE_THROW(platform::errors::InvalidArgument( "Invalid Rank number, " "currently only support rank between 2~6")); } } return ret; } framework::Tensor Diag(const framework::Tensor& x, int offset = 0, // FIXME link error int padding_value = 0) { PADDLE_ENFORCE_EQ(padding_value, 0, platform::errors::InvalidArgument( "Current diag only support padding_value = 0")); PADDLE_ENFORCE_EQ(offset, 0, platform::errors::InvalidArgument( "Current diag only support offset = 0," "you can use DiagOp instead(not recommend)")); framework::Tensor ret; int x_rank = x.dims().size(); std::vector out_shape; if (x_rank == 2) { PADDLE_THROW(platform::errors::InvalidArgument( "Current diag only support vector" "-> diagonalized matrix, not support matrix -> vector," " Use DiagOp instead.")); } else if (x_rank == 1) { out_shape.push_back(x.dims()[0]); out_shape.push_back(x.dims()[0]); } else { PADDLE_THROW( platform::errors::InvalidArgument("Rank must less or equal than 2")); } ret = Fill({out_shape[0], out_shape[0]}, 0.0); T* output = ret.mutable_data(context.GetPlace()); auto for_range = GetForRange(x.numel()); for_range(DiagFunctor(x.data(), x.numel(), output)); return ret; } // batch_diag for CPU only Tensor BatchDiag(const Tensor& x, int batch) { Tensor out; auto* x_data = x.data>(); auto numel = x.numel(); auto* out_data = out.mutable_data>( x.dims(), context.GetPlace(), static_cast(numel * sizeof(phi::dtype::Real))); auto x_dims = x.dims(); int num_dims = x_dims.size(); std::vector out_shape; for (int i = 0; i < num_dims - 1; ++i) { out_shape.push_back(x.dims()[i]); } out.Resize(phi::make_ddim(out_shape)); int order = x.dims()[num_dims - 1]; int stride_out = order * order; int stride_in = order + 1; for (int i = 0; i < batch; ++i) { for (int j = 0; j < order; ++j) { out_data[i * order + j] = x_data[stride_out * i + stride_in * j]; } } return out; } // a complex number x times a real number y, which is represented as (a+0j) Tensor RealMulComplex(const Tensor& x, const Tensor& y) { framework::Tensor ret; std::vector out_shape = GetBroadcastShape({&x, &y}); ret.Resize(phi::make_ddim(out_shape)); ElementwiseComputeEx, DeviceContext, T>( context, &x, &y, -1, RealMulComplexFunctor(), &ret); return ret; } framework::Tensor Div(const framework::Tensor& x, const framework::Tensor& y) { framework::Tensor ret; if (x.type() != y.type()) { ret.mutable_data(x.dims(), context.GetPlace()); auto x_vector = EigenVector::Flatten(x); auto y_vector = EigenVector::Flatten(y); auto out_vector = EigenVector::Flatten(ret); auto& place = *context.template device_context().eigen_device(); out_vector.device(place) = x_vector / y_vector; } else { std::vector out_shape = GetBroadcastShape({&x, &y}); ret.Resize(phi::make_ddim(out_shape)); ElementwiseComputeEx, DeviceContext, T>( context, &x, &y, -1, DivFunctor(), &ret); } return ret; } framework::Tensor Add(const framework::Tensor& x, const framework::Tensor& y) { // element wise add, support numpy broadcast. framework::Tensor ret; std::vector out_shape = GetBroadcastShape({&x, &y}); ret.Resize(phi::make_ddim(out_shape)); ElementwiseComputeEx, DeviceContext, T>( context, &x, &y, -1, AddFunctor(), &ret); return ret; } framework::Tensor Mul(const framework::Tensor& x, const framework::Tensor& y) { framework::Tensor ret; std::vector out_shape = GetBroadcastShape({&x, &y}); ret.Resize(phi::make_ddim(out_shape)); ElementwiseComputeEx, DeviceContext, T>( context, &x, &y, -1, MulFunctor(), &ret); return ret; } framework::Tensor ReduceSum(const framework::Tensor& x, std::vector out_dim) { framework::AttributeMap attrs; attrs["dim"] = std::vector{-1}; NameInTensorMap inputs({{"X", {&x}}}); return CreateOpRunAndReturnTensor("reduce_sum", inputs, attrs, out_dim); } framework::Tensor ReduceMax(const framework::Tensor& x, std::vector out_dim) { framework::AttributeMap attrs; attrs["dim"] = std::vector{-1}; NameInTensorMap inputs({{"X", {&x}}}); return CreateOpRunAndReturnTensor("reduce_max", inputs, attrs, out_dim); } // Support float and complex type subtraction,the default is T type template framework::Tensor Sub(const framework::Tensor& x, const framework::Tensor& y) { framework::Tensor ret; std::vector out_shape = GetBroadcastShape({&x, &y}); ret.Resize(phi::make_ddim(out_shape)); if (platform::is_gpu_place(context.GetPlace())) { #if defined(__NVCC__) || defined(__HIPCC__) // For GPU, there is no need to define XxxInverseFunctor and call // ElementwiseComputeEx in two branches. ElementwiseComputeEx, DeviceContext, InT>( context, &x, &y, -1, SubFunctor(), &ret); #endif } else { if (x.dims().size() >= y.dims().size()) { ElementwiseComputeEx, DeviceContext, InT>( context, &x, &y, -1, SubFunctor(), &ret); } else { // This is copyed from elementwise_sub, which means we // need reverse will xrank < yrank ElementwiseComputeEx, DeviceContext, InT>( context, &x, &y, -1, InverseSubFunctor(), &ret); } } return ret; } const framework::Tensor Unsqueeze(const framework::Tensor& x, int axis = 0) { // don't copy data, only change the dims framework::Tensor out; out.ShareDataWith(x); std::vector out_shape = phi::vectorize(x.dims()); if (axis >= 0) { auto index = (out_shape.begin() + axis); out_shape.insert(index, 1); } else if (axis < 0) { auto index = (out_shape.end() + axis + 1); out_shape.insert(index, 1); } out.Resize(phi::make_ddim(out_shape)); return out; } framework::Tensor Fill(std::vector shape, float fill_value) { framework::Tensor ret; ret.Resize(phi::make_ddim(shape)); ret.mutable_data(context.GetPlace()); auto& dev_ctx = context.template device_context(); phi::funcs::SetConstant()(dev_ctx, &ret, T(fill_value)); return ret; } framework::Tensor Infinits(std::vector shape) { auto value = static_cast(std::numeric_limits::infinity()); return Fill(shape, value); } framework::Tensor Eye(int n) { auto output = Fill({n}, 1); auto ret = Diag(output); return ret; } framework::Tensor Slice(const framework::Tensor& x, std::vector axes, std::vector starts, std::vector ends) { framework::Tensor ret; std::vector new_axes = axes; std::vector out_shape = phi::vectorize(x.dims()); size_t rank = out_shape.size(); PADDLE_ENFORCE_EQ( axes.size(), starts.size(), platform::errors::InvalidArgument("Slice Operator Argument Invalided")); PADDLE_ENFORCE_EQ( ends.size(), starts.size(), platform::errors::InvalidArgument("Slice Operator Argument Invalided")); for (unsigned int i = 0; i < axes.size(); ++i) { int axis = axes[i]; if (axis < 0) axis = rank + axis; new_axes[i] = axis; // change negative to positive int st = starts[i]; int ed = ends[i]; PADDLE_ENFORCE_GT(ed, st, platform::errors::InvalidArgument( "C++ Slice Operation Not Support End < Start")); out_shape[axis] = ed - st; } std::vector offset(rank), extends(rank); for (size_t i = 0; i < rank; ++i) { offset[i] = 0; extends[i] = x.dims()[i]; } for (size_t i = 0; i < new_axes.size(); ++i) { offset[new_axes[i]] = starts[i]; extends[new_axes[i]] = ends[i] - starts[i]; } ret.Resize(phi::make_ddim(out_shape)); ret.mutable_data(context.GetPlace()); switch (rank) { DITO_SLICE_RANK_CASE(1); DITO_SLICE_RANK_CASE(2); DITO_SLICE_RANK_CASE(3); DITO_SLICE_RANK_CASE(4); DITO_SLICE_RANK_CASE(5); DITO_SLICE_RANK_CASE(6); default: { PADDLE_THROW(platform::errors::InvalidArgument( "Invalid Rank number, " "currently only support rank between 2~6")); } } return ret; } framework::Tensor TrilTriu(const framework::Tensor& x, int diagonal, bool lower) { framework::AttributeMap attrs; attrs["diagonal"] = diagonal; attrs["lower"] = lower; NameInTensorMap inputs({{"X", {&x}}}); int x_rank = x.dims().size(); PADDLE_ENFORCE_GE( x_rank, 2, platform::errors::InvalidArgument("Rank must be at least 2.")); std::vector out_shape = phi::vectorize(x.dims()); return CreateOpRunAndReturnTensor("tril_triu", inputs, attrs, out_shape); } framework::Tensor TriangularSolve(const framework::Tensor& x, const framework::Tensor& y, bool upper, bool transpose, bool unitriangular) { framework::AttributeMap attrs; attrs["upper"] = upper; attrs["transpose"] = transpose; attrs["unitriangular"] = unitriangular; NameInTensorMap inputs({{"X", {&x}}, {"Y", {&y}}}); auto x_dims = x.dims(); auto y_dims = y.dims(); auto y_dims_n = y_dims.size(); std::vector x_dims_vec = phi::vectorize(x_dims); std::vector y_dims_vec = phi::vectorize(y_dims); std::vector x_dims_vec_cut(x_dims_vec.begin(), x_dims_vec.end() - 2); std::vector y_dims_vec_cut(y_dims_vec.begin(), y_dims_vec.end() - 2); std::vector expand_batch_portion = get_broadcast_batch_portion(x_dims_vec_cut, y_dims_vec_cut); std::vector y_broadcast_dims({expand_batch_portion}); y_broadcast_dims.insert(y_broadcast_dims.end(), {y_dims_vec[y_dims_n - 2], y_dims_vec[y_dims_n - 1]}); std::vector out_shape(y_broadcast_dims.begin(), y_broadcast_dims.end()); return CreateOpRunAndReturnTensor("triangular_solve", inputs, attrs, out_shape); } framework::Tensor ConcatTwoTensors(const framework::Tensor& x, const framework::Tensor& y, int axis) { framework::AttributeMap attrs; attrs["axis"] = axis; std::vector inputs_dims({x.dims(), y.dims()}); NameInTensorMap inputs({{"X", {&x, &y}}}); size_t axis_ = ComputeAxisForConcatOp(static_cast(axis), static_cast(inputs_dims[0].size())); framework::DDim out_dims = ComputeAndCheckShapeForConcatOp(true, inputs_dims, axis_); if (out_dims[axis_] < 0) { out_dims[axis_] = -1; } std::vector out_shape = phi::vectorize(out_dims); return CreateOpRunAndReturnTensor("concat", inputs, attrs, out_shape); } Tensor Conj(const Tensor& x) { Tensor out; auto* out_data = out.mutable_data(x.dims(), context.GetPlace()); auto* x_data = x.data(); auto for_range = GetForRange(x.numel()); phi::funcs::ConjFunctor functor(x_data, x.numel(), out_data); for_range(functor); return out; } Tensor Real(const Tensor& x) { Tensor out; auto numel = x.numel(); auto* out_data = out.mutable_data>( x.dims(), context.GetPlace(), static_cast(numel * sizeof(phi::dtype::Real))); auto* x_data = x.data(); auto for_range = GetForRange(numel); phi::funcs::RealFunctor functor(x_data, out_data, numel); for_range(functor); return out; } Tensor DiagFill(const int m, const int n, const int num_lower_diags, const int num_upper_diags, const Tensor& scale, const Tensor& input) { Tensor out; auto& dev_ctx = context.template device_context(); platform::ForRange for_range(dev_ctx, input.numel()); DiagAndFillFunctor diag_and_copy_functor( m, n, num_lower_diags, num_upper_diags, scale.data(), input.data(), out.mutable_data(input.dims(), input.place())); for_range(diag_and_copy_functor); return out; } private: const framework::ExecutionContext& context; phi::funcs::BlasT GetBlas() { return phi::funcs::GetBlas(context); } platform::ForRange GetForRange(int numel) { auto& dev_ctx = context.template device_context(); return platform::ForRange(dev_ctx, numel); } template void EigenSliceWrapper(const framework::Tensor* in, const std::vector& start, const std::vector& end, framework::Tensor* out) { // Slice by call Eigen Tensor Function `.slice()` size_t rank = in->dims().size(); PADDLE_ENFORCE_EQ(start.size(), rank, platform::errors::InvalidArgument( "EigenSliceWrapper function start " "argument must have the same length as input rank.")); PADDLE_ENFORCE_EQ(end.size(), rank, platform::errors::InvalidArgument( "EigenSliceWrapper function end " "argument must have the same length as input rank.")); auto eigen_place_ptr = context.template device_context().eigen_device(); auto eigen_place = *eigen_place_ptr; auto out_t = framework::EigenTensor::From(*out, out->dims()); auto in_t = framework::EigenTensor::From(*in, in->dims()); Eigen::DSizes offsets_32bit, extents_32bit; for (size_t i = 0; i < D; i++) { offsets_32bit[i] = start[i]; extents_32bit[i] = end[i]; } EigenSlice, T, D>::Eval( eigen_place, framework::To32BitIndex(out_t), framework::To32BitIndex(in_t), offsets_32bit, extents_32bit); } framework::Tensor CreateOpRunAndReturnTensor( const std::string& type, const NameInTensorMap& inputs, const framework::AttributeMap& attrs, std::vector out_shape, NameOutTensor out_str = {"Out"}) { // varialble set dims must be LoDTensor / SelectedRowTensor framework::Scope& local_scope = context.scope().NewScope(); framework::VariableNameMap op_outputs; for (auto out_name : out_str) { local_scope.Var("tmp_" + out_name)->GetMutable(); op_outputs[out_name].emplace_back("tmp_" + out_name); } auto out_var = local_scope.Var("tmp_Out"); // return the Out // create Out Tensor and allocat memory out_var->GetMutable()->mutable_data( phi::make_ddim(out_shape), context.GetPlace()); // phi::make_ddim(out_shape) framework::VariableNameMap op_inputs; int counter = 0; for (auto item : inputs) { auto& tensors = item.second; std::vector name_vector; for (auto each_tensor : tensors) { // create score variable and reset the tensor. std::string _name = "tmp" + std::to_string(counter++); auto in_var = local_scope.Var(_name); // create framework::LoDTensor tmp_tns; tmp_tns.ShareDataWith(*each_tensor); // tensor -> lodtensor (*in_var->GetMutable()) = tmp_tns; // initialize and set value name_vector.emplace_back(_name); } op_inputs[item.first] = name_vector; } auto op = framework::OpRegistry::CreateOp(type, op_inputs, op_outputs, attrs); op->Run(local_scope, context.GetPlace()); framework::Tensor out; out.ShareDataWith(*(out_var->GetMutable())); out.Resize(phi::make_ddim(out_shape)); context.scope().DeleteScope(&local_scope); return out; } }; } // namespace math } // namespace operators } // namespace paddle