// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/svd_kernel.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/complex_functors.h" #include "paddle/phi/kernels/funcs/lapack/lapack_function.h" #include "paddle/phi/kernels/transpose_kernel.h" namespace phi { template void LapackSvd( const T* X, T* U, T* VH, T* S, int rows, int cols, int full = false) { char jobz = full ? 'A' : 'S'; int mx = std::max(rows, cols); int mn = std::min(rows, cols); T* a = const_cast(X); int lda = rows; int ldu = rows; int ldvt = full ? cols : mn; int lwork = full ? (4 * mn * mn + 6 * mn + mx) : (4 * mn * mn + 7 * mn); std::vector work(lwork); std::vector iwork(8 * mn); int info; phi::funcs::lapackSvd(jobz, rows, cols, a, lda, S, U, ldu, VH, ldvt, work.data(), lwork, iwork.data(), &info); if (info < 0) { PADDLE_THROW(phi::errors::InvalidArgument( "This %s-th argument has an illegal value", info)); } if (info > 0) { PADDLE_THROW(phi::errors::InvalidArgument( "DBDSDC/SBDSDC did not converge, updating process failed. May be you " "passes a invalid matrix.")); } } template void BatchSvd(const T* X, T* U, T* VH, T* S, int rows, int cols, int batches, int full = false) { // NOTE: this function is row major, because this function called the lapack. int stride = rows * cols; int k = std::min(rows, cols); int stride_u = full ? rows * rows : k * rows; int stride_v = full ? cols * cols : k * cols; for (int i = 0; i < batches; ++i) { LapackSvd(X + i * stride, U + i * stride_u, VH + i * stride_v, S + i * k, rows, cols, full); } return; } template void SvdKernel(const Context& dev_ctx, const DenseTensor& X, bool full_matrices, DenseTensor* U, DenseTensor* S, DenseTensor* VH) { int full = full_matrices; /*Create Tensors and output, set the dim ...*/ auto numel = X.numel(); DenseTensor trans_x = ::phi::TransposeLast2Dim(dev_ctx, X); auto* x_data = trans_x.data(); auto x_dims = X.dims(); int rows = x_dims[x_dims.size() - 2]; int cols = x_dims[x_dims.size() - 1]; // int k = std::min(rows, cols); // int col_u = full ? rows : k; // int col_v = full ? cols : k; int batches = numel / (rows * cols); auto* U_out = dev_ctx.template Alloc>(U); auto* VH_out = dev_ctx.template Alloc>(VH); auto* S_out = dev_ctx.template Alloc>(S); /*SVD Use the Eigen Library*/ BatchSvd(x_data, U_out, VH_out, S_out, rows, cols, batches, full); /* let C[m, n] as a col major matrix with m rows and n cols. * let R[m, n] is row major matrix with m rows and n cols. * then we have: R[m,n] = C[m, n].resize((n,m)).tranpose_last_two() * */ auto col_major_to_row_major = [&dev_ctx](DenseTensor* out) { auto origin_dim = out->dims(); int64_t& x = origin_dim[origin_dim.size() - 1]; int64_t& y = origin_dim[origin_dim.size() - 2]; std::swap(x, y); out->Resize(origin_dim); return ::phi::TransposeLast2Dim(dev_ctx, *out); }; *U = col_major_to_row_major(U); *VH = col_major_to_row_major(VH); } } // namespace phi PD_REGISTER_KERNEL(svd, CPU, ALL_LAYOUT, phi::SvdKernel, float, double) {}