# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections from paddle.proto.ModelConfig_pb2 import ModelConfig import paddle.trainer_config_helpers as conf_helps import layer as v2_layer import config_base import cPickle from paddle.trainer import config_parser as cp __all__ = ['Topology'] class Topology(object): """ Topology is used to store the information about all layers and network configs. """ def __init__(self, layers, extra_layers=None): def __check__(layers): if not isinstance(layers, collections.Sequence): layers = [layers] for layer in layers: __check_layer_type__(layer) return layers layers = __check__(layers) self.layers = layers if extra_layers is not None: extra_layers = __check__(extra_layers) self.__model_config__ = v2_layer.parse_network( layers, extra_layers=extra_layers) if extra_layers is not None: self.layers.extend(extra_layers) assert isinstance(self.__model_config__, ModelConfig) def update_from_default(self): # HACK(typhoonzero): update ParameterConfig(proto) in case of # optimizers are defined after layers, or between layers. # Must be called from trainer.__init__() for parameter in self.__model_config__.parameters: if parameter.momentum == 0.0 and cp.g_default_momentum: parameter.momentum = cp.g_default_momentum if parameter.decay_rate == 0.0 and cp.g_default_decay_rate: parameter.decay_rate = cp.g_default_decay_rate if parameter.initial_mean == 0.0: parameter.initial_mean = cp.g_default_initial_mean if parameter.initial_std == 0.01: parameter.initial_std = cp.g_default_initial_std if parameter.initial_strategy == 0: parameter.initial_strategy = cp.g_default_initial_strategy if parameter.initial_smart == False: parameter.initial_smart = cp.g_default_initial_smart if parameter.num_batches_regularization == 1 and \ cp.g_default_num_batches_regularization: parameter.num_batches_regularization = \ cp.g_default_num_batches_regularization if parameter.gradient_clipping_threshold == 0.0 and \ cp.g_default_gradient_clipping_threshold: parameter.gradient_clipping_threshold = \ cp.g_default_gradient_clipping_threshold if parameter.device == -1 and cp.g_default_device: parameter.device = cp.g_default_device # FIXME(typhoonzero): ignored: update_hooks, g_default_compact_func def use_sparse_updater(self): """ check if any parameter require to use sparse_update :return: """ use_sparse = False for parameter in self.__model_config__.parameters: if parameter.sparse_update or parameter.sparse_remote_update: use_sparse = True break return use_sparse def proto(self): return self.__model_config__ def get_layer(self, name): """ get v2.Layer Class instance by layer name :param name: :return: """ return v2_layer.get_layer(name) def data_layers(self): """ get all data layer :return: """ data_layers = {} for layer in self.proto().layers: l = v2_layer.get_layer(layer.name) if l and l.layer_type == conf_helps.LayerType.DATA: data_layers[layer.name] = l return data_layers def data_type(self): """ get data_type from proto, such as: [('image', dense_vector(768)), ('label', integer_value(10))] """ data_layers = self.data_layers() return [(nm, data_layers[nm].data_type) for nm in self.proto().input_layer_names] def get_layer_proto(self, name): for layer in self.__model_config__.layers: if layer.name == name: return layer return None def serialize_for_inference(self, stream): protobin = self.proto().SerializeToString() data_type = self.data_type() cPickle.dump({ 'protobin': protobin, 'data_type': data_type }, stream, cPickle.HIGHEST_PROTOCOL) def __check_layer_type__(layer): if not isinstance(layer, config_base.Layer): raise ValueError('layer should have type paddle.v2.config_base.Layer')