# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..wrapped_decorator import signature_safe_contextmanager from .layer_function_generator import templatedoc from .tensor import assign, cast, fill_constant from .. import core from ..framework import ( Program, Variable, Operator, _non_static_mode, static_only, _in_legacy_dygraph, in_dygraph_mode, ) from ..layer_helper import LayerHelper, unique_name from .nn import logical_and, logical_or from .utils import ( assert_same_structure, map_structure, hold_mutable_vars, copy_mutable_vars, padding_to_same_structure, is_sequence, pack_sequence_as, flatten, to_sequence, ) import numpy import warnings from functools import reduce, partial from ..data_feeder import ( convert_dtype, check_variable_and_dtype, check_type, check_dtype, ) from ..backward import _infer_var_data_type_shape_ import paddle from paddle import _C_ops, _legacy_C_ops __all__ = [ 'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than', 'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal', 'array_read', 'array_length', 'cond', 'IfElse', 'DynamicRNN', 'StaticRNN', 'reorder_lod_tensor_by_rank', 'Print', 'Assert', 'is_empty', 'case', 'switch_case', 'while_loop', ] def select_output(input, outputs, mask): """ **select_output** This API takes in one input and multiple outputs and an integer mask. It selects the output specified by the mask and copy the input to selected output. It is useful in control flow. Args: input(Variable): The input variable outputs(tuple|list): The output variables mask(Variable): A tensor containing 1 integer number selecting which output to be copied with input Returns: Variable: The outputs variables """ helper = LayerHelper('select_output', **locals()) check_type(input, 'input', (Variable), 'select_output') check_variable_and_dtype(mask, 'mask', ['int32'], 'select_output') check_type(outputs, 'outputs', (list, tuple), 'select_output') helper.append_op( type='select_output', inputs={'X': input, 'Mask': mask}, outputs={'Out': outputs}, ) return outputs def _select_input_infer_shape(first_shape, second_shape): """ This function infer the output shape by following algorithm: 1. if the dims is different, raise a error. 2. compare axis one by one: if a == b: we set axis to a if a != b: we set axis to -1 for compatibility,non declarative mode, we just return second_shape. """ if len(first_shape) != len(second_shape): warnings.warn( f"the input shapes of select_input should have the same rank, but get {first_shape}, {second_shape}" ) return second_shape out_shape = list( map(lambda a, b: a if a == b else -1, first_shape, second_shape) ) return out_shape def select_input(inputs, mask): """ **select_input** This API takes in multiple inputs and uses an integer mask to select one input to output. It is useful in control flow. Args: inputs(tuple|list): The input variables mask(Variable): A tensor containing 1 integer number selecting which input to output Returns: Variable: The selected input variable """ helper = LayerHelper('select_input', **locals()) check_type(inputs, 'inputs', (list, tuple), 'select_input') check_variable_and_dtype(mask, 'mask', ['int32'], 'select_input') # Select input should expand the shape. If it is - 1 and valid number, use - 1 first. If the dim is different, an error will be reported directly # assert inputs[0].dtype == inputs[1].dtype, f"Expect the inputs should have the same dtype, but get {inputs[0].dtype} and {inputs[1].dtype}" output_shape = _select_input_infer_shape(inputs[0].shape, inputs[1].shape) output_dtype = inputs[1].dtype output_type = inputs[1].type out = helper.create_variable( dtype=output_dtype, shape=output_shape, type=output_type ) helper.append_op( type='select_input', inputs={'X': inputs, 'Mask': mask}, outputs={'Out': out}, ) return out def select_input_with_buildin_type(inputs, mask, name): from paddle.fluid.dygraph.dygraph_to_static.variable_trans_func import ( to_static_variable, ) from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar false_var, true_var = inputs if isinstance(false_var, UndefinedVar) and isinstance( true_var, UndefinedVar ): """None -> UndefinedVar, so the real value is a [None, UndefinedVar] or [None, None], we just return None.""" return None if isinstance(false_var, Variable) and isinstance(true_var, Variable): try: return select_input(inputs, mask) except Exception as e: raise RuntimeError( f"Exceptions throwed while doing select_input on {name}:\n{e}" ) elif isinstance(false_var, support_ret_buildin_type) and isinstance( false_var, type(true_var) ): if false_var == true_var: return false_var else: inputs = [ to_static_variable(false_var), to_static_variable(true_var), ] # Deal with the situations like this: false_var is int and true_var is Variable elif ( isinstance(false_var, support_ret_buildin_type) and isinstance(true_var, Variable) ) or ( isinstance(true_var, support_ret_buildin_type) and isinstance(false_var, Variable) ): inputs = [to_static_variable(false_var), to_static_variable(true_var)] warnings.warn( "Return results from different branches in cond are not same type: " "false_var returned by false_fn is '{}' and true_var of true_fn is " "'{}'".format(type(false_var), type(true_var)) ) elif ( isinstance(false_var, UndefinedVar) and isinstance(true_var, (Variable,) + support_ret_buildin_type) ) or ( isinstance(true_var, UndefinedVar) and isinstance(false_var, (Variable,) + support_ret_buildin_type) ): def create_var_if_not_undefined_var(a): if isinstance(a, UndefinedVar): return a return to_static_variable(a) true_var, false_var = to_static_variable(true_var), to_static_variable( false_var ) inputs = [false_var, true_var] else: raise TypeError( "Unsupported return type of true_fn and false_fn in cond: false_var " "returned by false_fn is '{}' and true_var of true_fn is '{}'".format( type(false_var), type(true_var) ) ) try: return select_input(inputs, mask) except Exception as e: raise RuntimeError( f"Exceptions throwed while doing select_input on {name}:\n{e}" ) def split_lod_tensor(input, mask, level=0): """ This function takes in an input that contains the complete lod information, and takes in a mask which is used to mask certain parts of the input. The output is the true branch and the false branch with the mask applied to the input at a certain level in the tensor. Mainly used in IfElse to split data into two parts. Args: input(Variable|tuple|list|None): The input tensor that contains complete lod information needed to construct the output. mask(Variable|list): A bool column vector which masks the input. level(int): The specific lod level to split. Returns: tuple(Variable, Variable): The true branch of tensor as per the mask applied to input. The false branch of tensor as per the mask applied to input. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.layers.data(name='x', shape=[1]) x.persistable = True y = fluid.layers.data(name='y', shape=[1]) y.persistable = True out_true, out_false = fluid.layers.split_lod_tensor( input=x, mask=y, level=level) """ check_type( input, 'input', (Variable, list, tuple, type(None)), 'fluid.layers.split_lod_tensor', ) check_type(mask, 'mask', (Variable, list), 'fluid.layers.split_lod_tensor') check_type(level, 'level', int, 'fluid.layers.split_lod_tensor') helper = LayerHelper('split_lod_tensor', **locals()) out_true = helper.create_variable_for_type_inference(dtype=input.dtype) out_false = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type='split_lod_tensor', inputs={ 'X': input, 'Mask': mask, }, outputs={'OutTrue': out_true, 'OutFalse': out_false}, attrs={'level': level}, ) return out_true, out_false def merge_lod_tensor(in_true, in_false, x, mask, level=0): """ **merge_lod_tensor** This function takes in an input :math:`x`, the True branch, the False branch and a binary :math:`mask`. Using this information, this function merges the True and False branches of the tensor into a single tensor as output at a certain lod level indicated by :math:`level`. Used in IfElse to merge the output if True block and False Block. Args: in_true(Variable|tuple|list|None): The True branch to be merged. in_false(Variable|tuple|list|None): The False branch to be merged. x(Variable|tuple|list|None): The input tensor that contains complete lod information needed to construct the output. mask(Variable|list): A bool column vector which masks the input. level(int): The specific lod level to merge. Returns: Variable: The merged output tensor. Examples: .. code-block:: python import paddle.fluid as fluid x = layers.data( name='x', shape=[1], dtype='float32', stop_gradient=False) y = layers.data( name='y', shape=[1], dtype='bool', stop_gradient=False) level = 0 out_true, out_false = layers.split_lod_tensor( input=x, mask=y, level=level) out = layers.merge_lod_tensor( in_true=out_true, in_false=out_false, mask=y, x=x, level=level) """ helper = LayerHelper('merge_lod_tensor', **locals()) check_type( x, 'x', (Variable, list, tuple, type(None)), 'fluid.layers.merge_lod_tensor', ) check_type(mask, 'mask', (Variable, list), 'fluid.layers.merge_lod_tensor') check_type( in_true, 'in_true', (Variable, list, tuple, type(None)), 'fluid.layers.merge_lod_tensor', ) check_type( in_false, 'in_false', (Variable, list, tuple, type(None)), 'fluid.layers.merge_lod_tensor', ) out = helper.create_variable_for_type_inference(dtype=in_true.dtype) helper.append_op( type='merge_lod_tensor', inputs={'X': x, 'Mask': mask, 'InTrue': in_true, 'InFalse': in_false}, outputs={'Out': out}, attrs={'level': level}, ) return out @static_only def Print( input, first_n=-1, message=None, summarize=20, print_tensor_name=True, print_tensor_type=True, print_tensor_shape=True, print_tensor_layout=True, print_tensor_lod=True, print_phase='both', ): ''' :api_attr: Static Graph **Print operator** This creates a print op that will print when a tensor is accessed. Wraps the tensor passed in so that whenever that a tensor is accessed, the message `message` is printed, along with the current value of the tensor `t`. Args: input (Variable): A Tensor to print. summarize (int): Number of elements in the tensor to be print. If it's value is -1, then all elements in the tensor will be print. message (str): A string message to print as a prefix. first_n (int): Only log `first_n` number of times. print_tensor_name (bool, optional): Print the tensor name. Default: True. print_tensor_type (bool, optional): Print the tensor type. Defaultt: True. print_tensor_shape (bool, optional): Print the tensor shape. Default: True. print_tensor_layout (bool, optional): Print the tensor layout. Default: True. print_tensor_lod (bool, optional): Print the tensor lod. Default: True. print_phase (str): Which phase to displace, including 'forward', 'backward' and 'both'. Default: 'both'. If set to 'backward', will only print the gradients of input tensor; If set to 'both', will both print the input tensor itself and the gradients of input tensor. Returns: Variable: Output tensor. NOTES: The input and output are two different variables, and in the following process, you should use the output variable but not the input, otherwise, the print layer doesn't have backward. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.full(shape=[2, 3], fill_value=3, dtype='int64') out = paddle.static.Print(x, message="The content of input layer:") main_program = paddle.static.default_main_program() exe = paddle.static.Executor(place=paddle.CPUPlace()) res = exe.run(main_program, fetch_list=[out]) # Variable: fill_constant_1.tmp_0 # - message: The content of input layer: # - lod: {} # - place: CPUPlace # - shape: [2, 3] # - layout: NCHW # - dtype: long # - data: [3 3 3 3 3 3] ''' check_variable_and_dtype( input, 'input', ['float32', 'float64', 'int32', 'int64', 'bool'], 'fluid.layers.Print', ) helper = LayerHelper('print' + "_" + input.name, **locals()) output = helper.create_variable_for_type_inference(input.dtype) helper.append_op( type='print', inputs={'In': input}, outputs={'Out': output}, attrs={ 'first_n': first_n, 'summarize': summarize, 'message': message or "", 'print_tensor_name': print_tensor_name, 'print_tensor_type': print_tensor_type, 'print_tensor_shape': print_tensor_shape, 'print_tensor_layout': print_tensor_layout, 'print_tensor_lod': print_tensor_lod, 'print_phase': print_phase.upper(), }, ) return output def Assert(cond, data=None, summarize=20, name=None): ''' This API creates an op that asserts the given condition is true. If the condition is false, prints the tensors in data. ``summarize`` specifies the number of the elements in the tensors to print. Args: cond (Variable): The boolean condition tensor whose numel should be 1. data (list|tuple, optional): list or tuple of tensors to print when condition is not true. If it's ``None``, no tensor will be printed. The default value is ``None``. summarize (int, optional): Number of elements in the tensor to be printed. If its value is -1, then all elements in the tensor will be printed. The default value is 20. name (str, optional): The default value is ``None`` . Normally users don't have to set this parameter. For more information, please refer to :ref:`api_guide_Name` . Returns: Operator: the created operation. Raises: TypeError: If ``cond`` is not boolean Variable. TypeError: If ``data`` is not a list or tuple or ``None``. TypeError: If ``summarize`` is not int. TypeError: If ``name`` is not a string or ``None`` . fluid.core.EnforceNotMet: If the condition is False in running time. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers x = layers.fill_constant(shape=[2, 3], dtype='float32', value=2.0) condition = layers.reduce_max(x) < 1.0 # False layers.Assert(condition, [x], 10, "example_assert_layer") exe = fluid.Executor() try: exe.run(fluid.default_main_program()) # Print x and throws paddle.fluid.core.EnforceNotMet exception # Example printed message for x: # # Variable: fill_constant_0.tmp_0 # - lod: {} # - place: CPUPlace() # - shape: [2, 3] # - layout: NCHW # - dtype: float # - data: [2 2 2 2 2 2] except fluid.core.EnforceNotMet as e: print("Assert Exception Example") ''' check_variable_and_dtype(cond, "cond", ["bool"], "fluid.layers.Assert") check_type(data, "data", (list, tuple, type(None)), "fluid.layers.Assert") check_type(summarize, "summarize", int, "fluid.layers.Assert") check_type(name, "name", (str, type(None)), "fluid.layers.Assert") layer_name = name if name else ('assert_' + cond.name) helper = LayerHelper(layer_name, **locals()) op = helper.append_op( type="assert", inputs={"Cond": cond, "Data": [] if data is None else list(data)}, attrs={"summarize": summarize}, ) return op class BlockGuard: """ BlockGuard class. BlockGuard class is used to create a sub-block in a program by using the Python `with` keyword. """ def __init__(self, main_program): if not isinstance(main_program, Program): raise TypeError("BlockGuard takes a program") self.main_program = main_program def __enter__(self): self.main_program._create_block() def __exit__(self, exc_type, exc_val, exc_tb): self.main_program._rollback() if exc_type is not None: return False # re-raise exception return True class BlockGuardWithCompletion(BlockGuard): """ BlockGuardWithCompletion class. BlockGuardWithCompletion class is used to create an op with a block in a program. """ def __init__(self, rnn): if not isinstance(rnn, StaticRNN): raise TypeError("BlockGuardWithCompletion takes a StaticRNN") super().__init__(rnn.helper.main_program) self.rnn = rnn def __enter__(self): self.rnn.status = StaticRNN.IN_RNN_BLOCK return super().__enter__() def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is not None: return False self.rnn.status = StaticRNN.AFTER_RNN_BLOCK self.rnn._complete_op() return super().__exit__(exc_type, exc_val, exc_tb) class StaticRNNMemoryLink: """ StaticRNNMemoryLink class. StaticRNNMemoryLink class is used to create a link between two memory cells of a StaticRNN. NOTE: This is a internal data structure of a very low-level API. Please use StaticRNN instead. Args: init(Variable): the initial variable for Memory. pre_mem(Variable): the memory variable in previous time step. mem(Variable): the memory variable in current time step. """ def __init__(self, init, pre_mem, mem=None): self.init = init self.pre_mem = pre_mem self.mem = mem class StaticRNN: """ :api_attr: Static Graph StaticRNN class. The StaticRNN can process a batch of sequence data. The first dimension of inputs represents sequence length, the length of each input sequence must be equal. StaticRNN will unfold sequence into time steps, user needs to define how to process each time step during the :code:`with` step. Args: name (str, optional): Please refer to :ref:`api_guide_Name`, Default None. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers vocab_size, hidden_size=10000, 200 paddle.enable_static() x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64') # create word sequence x_emb = layers.embedding( input=x, size=[vocab_size, hidden_size], dtype='float32', is_sparse=False) # transform batch size to dim 1 x_emb = paddle.transpose(x_emb, perm=[1, 0, 2]) rnn = fluid.layers.StaticRNN() with rnn.step(): # mark created x_emb as input, each step process a word word = rnn.step_input(x_emb) # create prev memory parameter, batch size comes from word prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word) hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu') # use hidden to update prev rnn.update_memory(prev, hidden) # mark hidden as output rnn.step_output(hidden) # get StaticrNN final output result = rnn() """ BEFORE_RNN_BLOCK = 0 IN_RNN_BLOCK = 1 AFTER_RNN_BLOCK = 2 def __init__(self, name=None): check_type(name, "name", (str, type(None)), "fluid.layers.StaticRNN") self.helper = LayerHelper("static_rnn", name=name) self.memories = {} # memory map, from pre_mem.name --> MemoryLink self.inputs = [] # input variable list in current block self.outputs = [] # output variable list in parent block self.status = StaticRNN.BEFORE_RNN_BLOCK # status flag. # sequence length, since it is a static RNN, sequence length are fixed. self.seq_len = None def step(self): """ Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block will be executed sequence_len times (sequence_len is the length of input) """ return BlockGuardWithCompletion(self) def _assert_in_rnn_block_(self, method): if self.status != StaticRNN.IN_RNN_BLOCK: raise ValueError("You must invoke {0} in rnn block".format(method)) def memory( self, init=None, shape=None, batch_ref=None, init_value=0.0, init_batch_dim_idx=0, ref_batch_dim_idx=1, ): """ Create a memory variable for static rnn. If the :code:`init` is not None, :code:`memory` will be initialized by this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref` must be set, and this function will create a new variable with shape and batch_ref to initialize :code:`init` Variable. Args: init(Variable, optional): Tensor used to init memory. If it is not set, :code:`shape` and :code:`batch_ref` must be provided. Default: None. shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape. NOTE the shape does not contain batch_size. Default: None. batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will be set as batch_ref's ref_batch_dim_idx value. Default: None. init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0. init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0. ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1. Returns: Variable: The memory variable. Examples 1: .. code-block:: python import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers vocab_size, hidden_size=10000, 200 paddle.enable_static() x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64') # create word sequence x_emb = layers.embedding( input=x, size=[vocab_size, hidden_size], dtype='float32', is_sparse=False) # transform batch size to dim 1 x_emb = paddle.transpose(x_emb, perm=[1, 0, 2]) rnn = fluid.layers.StaticRNN() with rnn.step(): # mark created x_emb as input, each step process a word word = rnn.step_input(x_emb) # create prev memory parameter, batch size comes from word prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word) hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu') # use hidden to update prev rnn.update_memory(prev, hidden) Examples 2: .. code-block:: python import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers vocab_size, hidden_size=10000, 200 paddle.enable_static() x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64') # create word sequence x_emb = layers.embedding( input=x, size=[vocab_size, hidden_size], dtype='float32', is_sparse=False) # transform batch size to dim 1 x_emb = paddle.transpose(x_emb, perm=[1, 0, 2]) boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1) rnn = fluid.layers.StaticRNN() with rnn.step(): # mark created x_emb as input, each step process a word word = rnn.step_input(x_emb) # init memory prev = rnn.memory(init=boot_memory) hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu') # update hidden with prev rnn.update_memory(prev, hidden) """ self._assert_in_rnn_block_('memory') check_type( init, "init", (Variable, type(None)), "fluid.layers.StaticRNN.memory", ) check_type( shape, "shape", (list, tuple, type(None)), "fluid.layers.StaticRNN.memory", ) check_type( batch_ref, "batch_ref", (Variable, type(None)), "fluid.layers.StaticRNN.memory", ) if init is None: if shape is None or batch_ref is None: raise ValueError( "if init is None, memory at least need shape and batch_ref" ) parent_block = self._parent_block() var_name = unique_name.generate_with_ignorable_key( "@".join([self.helper.name, "memory_boot"]) ) boot_var = parent_block.create_var( name=var_name, shape=shape, dtype=batch_ref.dtype, persistable=False, ) parent_block.append_op( type="fill_constant_batch_size_like", inputs={'Input': [batch_ref]}, outputs={'Out': [boot_var]}, attrs={ 'value': init_value, 'shape': boot_var.shape, 'dtype': boot_var.dtype, 'input_dim_idx': ref_batch_dim_idx, 'output_dim_idx': init_batch_dim_idx, }, ) return self.memory(init=boot_var) else: pre_mem = self.helper.create_variable( name=unique_name.generate_with_ignorable_key( "@".join([self.helper.name, "mem"]) ), dtype=init.dtype, shape=init.shape, ) self.memories[pre_mem.name] = StaticRNNMemoryLink( init=init, pre_mem=pre_mem ) return pre_mem def step_input(self, x): """ Mark a sequence as a StaticRNN input. Args: x(Variable): The input sequence, the shape of x should be [seq_len, ...]. Returns: Variable: The current time step data in the input sequence. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers vocab_size, hidden_size=10000, 200 paddle.enable_static() x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64') # create word sequence x_emb = layers.embedding( input=x, size=[vocab_size, hidden_size], dtype='float32', is_sparse=False) # transform batch size to dim 1 x_emb = paddle.transpose(x_emb, perm=[1, 0, 2]) rnn = fluid.layers.StaticRNN() with rnn.step(): # mark created x_emb as input, each step process a word word = rnn.step_input(x_emb) # create prev memory parameter, batch size comes from word prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word) hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu') # use hidden to update prev rnn.update_memory(prev, hidden) """ self._assert_in_rnn_block_('step_input') check_type(x, "x", Variable, "fluid.layers.StaticRNN.step_input") if self.seq_len is None: self.seq_len = x.shape[0] elif x.shape[0] != -1 and self.seq_len != x.shape[0]: raise ValueError("Static RNN only take fix seq_len input") ipt = self.helper.create_variable( name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type ) self.inputs.append(ipt) return ipt def step_output(self, o): """ Mark a sequence as a StaticRNN output. Args: o(Variable): The output sequence. Returns: None. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers vocab_size, hidden_size=10000, 200 paddle.enable_static() x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64') # create word sequence x_emb = layers.embedding( input=x, size=[vocab_size, hidden_size], dtype='float32', is_sparse=False) # transform batch size to dim 1 x_emb = paddle.transpose(x_emb, perm=[1, 0, 2]) rnn = fluid.layers.StaticRNN() with rnn.step(): # mark created x_emb as input, each step process a word word = rnn.step_input(x_emb) # create prev memory parameter, batch size comes from word prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word) hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu') # use hidden to update prev rnn.update_memory(prev, hidden) rnn.step_output(hidden) result = rnn() """ self._assert_in_rnn_block_('step_output') check_type(o, "o", Variable, "fluid.layers.StaticRNN.step_output") tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype) self.helper.append_op( type='rnn_memory_helper', inputs={'X': [o]}, outputs={'Out': tmp_o}, attrs={'dtype': o.dtype}, ) out_var = self._parent_block().create_var( name=tmp_o.name, shape=[self.seq_len] + list(tmp_o.shape), dtype=tmp_o.dtype, ) self.outputs.append(out_var) def output(self, *outputs): """ Mark the StaticRNN output variables. Args: outputs: The output Tensor, can mark multiple variables as output Returns: None Examples: .. code-block:: python import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers vocab_size, hidden_size=10000, 200 paddle.enable_static() x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64') # create word sequence x_emb = layers.embedding( input=x, size=[vocab_size, hidden_size], dtype='float32', is_sparse=False) # transform batch size to dim 1 x_emb = paddle.transpose(x_emb, perm=[1, 0, 2]) rnn = fluid.layers.StaticRNN() with rnn.step(): # mark created x_emb as input, each step process a word word = rnn.step_input(x_emb) # create prev memory parameter, batch size comes from word prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word) hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu') # use hidden to update prev rnn.update_memory(prev, hidden) # mark each step's hidden and word as output rnn.output(hidden, word) result = rnn() """ for each in outputs: self.step_output(each) def update_memory(self, mem, var): """ Update the memory from :code:`mem` to :code:`var`. Args: mem(Variable): the memory variable. var(Variable): the plain variable generated in RNN block, used to update memory. var and mem should have same dims and data type. Returns: None """ check_type(mem, "mem", Variable, "fluid.layers.StaticRNN.update_memory") check_type(var, "var", Variable, "fluid.layers.StaticRNN.update_memory") self.memories[mem.name].mem = var def _parent_block(self): prog = self.helper.main_program parent_idx = prog.current_block().parent_idx assert parent_idx >= 0 parent_block = prog.block(parent_idx) return parent_block def __call__(self, *args, **kwargs): if self.status != StaticRNN.AFTER_RNN_BLOCK: raise ValueError("RNN output can only be retrieved after rnn block") if len(self.outputs) == 0: raise ValueError("RNN has no output") elif len(self.outputs) == 1: return self.outputs[0] else: return self.outputs def _complete_op(self): main_program = self.helper.main_program rnn_block = main_program.current_block() parent_block = self._parent_block() local_inputs = set() for op in rnn_block.ops: assert isinstance(op, Operator) for oname in op.output_names: for out_var_name in op.output(oname): local_inputs.add(out_var_name) for var in self.inputs: local_inputs.add(var.name) for m in self.memories: local_inputs.add(m) # NOTE(zcd): the params have two categories of variables. # - the variables that are the out of StaticRnn. # - the variables that are the parameters of some layers, for example, conv2d. params = list() for op in rnn_block.ops: assert isinstance(op, Operator) for iname in op.input_names: for in_var_name in op.input(iname): if in_var_name not in local_inputs: params.append(in_var_name) parameters = [ parent_block._find_var_recursive(name) for name in set(params) ] step_scope = parent_block.create_var( type=core.VarDesc.VarType.STEP_SCOPES ) inlinks = [parent_block.var(i.name) for i in self.inputs] outlinks = self.outputs # NOTE(zcd): the states maybe empty in some case. boot_memories = [] pre_memories = [] memories = [] for _, mem in self.memories.items(): boot_memories.append(mem.init) pre_memories.append(mem.pre_mem.name) assert ( mem.mem is not None ), "%s should be updated in every step." % (mem.init.name) mem_var = rnn_block.var(mem.mem.name) assert isinstance(mem_var, Variable) new_mem = self.helper.create_variable_for_type_inference( dtype=mem_var.dtype ) rnn_block.append_op( type='rnn_memory_helper', inputs={'X': [mem_var]}, outputs={'Out': [new_mem]}, attrs={'dtype': mem_var.dtype}, ) memories.append(new_mem.name) parent_block.append_op( type='recurrent', inputs={ 'inputs': inlinks, 'initial_states': boot_memories, 'parameters': parameters, }, outputs={'outputs': outlinks, 'step_scopes': [step_scope]}, attrs={ 'has_states': len(pre_memories) > 0, 'ex_states': pre_memories, 'states': memories, 'sub_block': rnn_block, }, ) class WhileGuard(BlockGuard): def __init__(self, while_op): if not isinstance(while_op, While): raise TypeError("WhileGuard takes a while op") super().__init__(while_op.helper.main_program) self.while_op = while_op def __enter__(self): self.while_op.status = While.IN_WHILE_BLOCK return super().__enter__() def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is not None: return False self.while_op.status = While.AFTER_WHILE_BLOCK self.while_op._complete() return super().__exit__(exc_type, exc_val, exc_tb) def get_inputs_outputs_in_block( current_block, inner_inputs, inner_outputs, helper ): """ Find inputs and outputs in current control flow block. :param current_block: Current control flow block. :param inner_inputs: Input var name of ops in current block. :param inner_outputs: Output var name of ops in current block. :return: inner_inputs, inner_outputs """ def is_ignore_vars(op, var_name): # NOTE(dev): There are some persistable var created in some non-standard API # such as "contrib.layers.shuffle_batch". It create a "Seed" used both in # Input and Output. This var shall not be considered as a loop_var in # control_flow. IGNORE_VAR_NAMES = {"shuffle_batch": ["shuffle_batch_seed"]} if op.type in IGNORE_VAR_NAMES: var_names = IGNORE_VAR_NAMES[op.type] for name in var_names: if name in var_name: return True return False # Step1: update inner_inputs and inner_outputs # NOTE: Here assumes that all variables are input or output of Ops, # but some variables are created without appendding a real op. # For example, in `arr = create_array(dtype)`, `arr` is not a output of a op. for op in current_block.ops: assert isinstance(op, Operator) for iname in op.input_names: for in_var_name in op.input(iname): if in_var_name not in inner_outputs and not is_ignore_vars( op, in_var_name ): inner_inputs.add(in_var_name) for oname in op.output_names: for out_var_name in op.output(oname): inner_outputs.add(out_var_name) # Step2: Remove LOD_TENSOR_ARRAY created in current control flow block. remove_inner_inputs = set() parent_block = helper.main_program.block(current_block.parent_idx) for in_var_name in inner_inputs: parent_block_var = parent_block._find_var_recursive(in_var_name) current_block_var = None if current_block.has_var(in_var_name): current_block_var = current_block.var(in_var_name) if ( not parent_block_var and current_block_var and current_block_var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY ): remove_inner_inputs.add(in_var_name) inner_inputs = inner_inputs - remove_inner_inputs return inner_inputs, inner_outputs class While: """ :api_attr: Static Graph while loop control flow. Repeat while body until cond is False. Note: A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1]. OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` . Notice: Local variables created in ``While`` are similar to that created in while of C++, and cannot be referenced externally. As a result, they cannot be obtained through ``fetch_list`` of ``Executor``. If you would like to access the variable out of ``while`` , PaddlePaddle provides ``assign`` API to assign local variables to external. Please refer to example code 2 or refer to `issue#22724 `_. Args: cond(Variable): A Tensor whose data type is bool controlling whether to continue looping. is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Examples 1: .. code-block:: python import paddle.fluid as fluid import numpy as np i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0) # loop counter loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10) # loop length cond = fluid.layers.less_than(x=i, y=loop_len) while_op = fluid.layers.While(cond=cond) with while_op.block(): i = fluid.layers.increment(x=i, value=1, in_place=True) fluid.layers.less_than(x=i, y=loop_len, cond=cond) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i]) print(res) # [array([10])] Examples 2: .. code-block:: python import paddle.fluid as fluid import numpy as np i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0) loop_len = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) one = fluid.layers.fill_constant(shape=[1], dtype='float32', value=1) data = fluid.data(name='data', shape=[1], dtype='float32') sums = fluid.layers.fill_constant(shape=[1], dtype='float32', value=0) # Define the variable to be obtained ouside of While, which name should be different from the variable inside the While to be obtained cond = fluid.layers.less_than(x=i, y=loop_len) while_op = fluid.layers.While(cond=cond) with while_op.block(): sums_tensor = fluid.layers.elementwise_add(x=data, y=data) fluid.layers.assign(sums_tensor, sums) # Update the value of sums_tensor defined in While to the sums which defined outside of While through layers.assign i = fluid.layers.increment(x=i, value=1, in_place=True) data = fluid.layers.elementwise_add(x=data, y=one) fluid.layers.less_than(x=i, y=loop_len, cond=cond) feed_data = np.ones(1).astype('float32') exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) res = exe.run(fluid.default_main_program(), feed={'data': feed_data}, fetch_list=sums) print(res[0]) # [2.] # Because the data in While does not update the value outside the While, the value of sums is [2.] after the loop """ BEFORE_WHILE_BLOCK = 0 IN_WHILE_BLOCK = 1 AFTER_WHILE_BLOCK = 2 def __init__(self, cond, is_test=False, name=None): self.helper = LayerHelper("while", name=name) self.status = While.BEFORE_WHILE_BLOCK check_variable_and_dtype(cond, 'cond', ['bool'], 'fluid.layers.While') if reduce(lambda a, b: a * b, cond.shape, 1) != 1: raise TypeError( "condition expected shape as [1], but given shape as {0}.".format( list(cond.shape) ) ) self.cond_var = cond self.is_test = is_test def block(self): return WhileGuard(self) def _complete(self): main_program = self.helper.main_program while_block = main_program.current_block() parent_block = main_program.block( main_program.current_block().parent_idx ) inner_outputs = {self.cond_var.name} x_name_list = set() x_name_list, inner_outputs = get_inputs_outputs_in_block( while_block, x_name_list, inner_outputs, self.helper ) out_vars = [] for inner_out_name in inner_outputs: inner_var = parent_block._find_var_recursive(inner_out_name) if inner_var: out_vars.append(inner_var) x_name_list |= set(map(lambda x: x.name, out_vars)) # NOTE(dev): cond_var has been contained in Input('Condition'), so # we remove it from Input('X') x_name_list -= {self.cond_var.name} step_scope = parent_block.create_var( type=core.VarDesc.VarType.STEP_SCOPES ) parent_block.append_op( type='while', inputs={ 'X': [ parent_block._var_recursive(x_name) for x_name in x_name_list ], 'Condition': [self.cond_var], }, outputs={'Out': out_vars, 'StepScopes': [step_scope]}, attrs={'sub_block': while_block, "is_test": self.is_test}, ) support_ret_buildin_type = (bool, float, int) def assign_skip_lod_tensor_array(input, output): """ Assign input to output, but skip the process of copying LoDTensorArray unless it's created in while_block. """ def has_shape_diff(x_var, y_var): if len(x_var.shape) != len(y_var.shape): return True for x_dim, y_dim in zip(x_var.shape, y_var.shape): if x_dim != y_dim and -1 not in [x_dim, y_dim]: return True return False if not isinstance(input, (Variable, core.VarBase)): if isinstance(output, Variable) and isinstance( input, support_ret_buildin_type ): assign(input, output) else: output = input return if input.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY: main_program = input.block.program parent_block = main_program.block( main_program.current_block().parent_idx ) if parent_block and not parent_block._find_var_recursive(input.name): assign(input, output) else: if ( isinstance(output, Variable) and isinstance(input, Variable) and has_shape_diff(input, output) ): warnings.warn( "In dy2static mode, we attemp to assign a variable with shape {} into a variable with shape{}, which is not always right.".format( input.shape, output.shape ) ) assign(input, output) def while_loop(cond, body, loop_vars, is_test=False, name=None): """ :api_attr: Static Graph while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False. Notice: Local variables defined in ``body`` cannot be obtained through ``fetch_list`` of ``Executor`` , variables should be defined outside ``body`` and placed in ``loop_vars`` for looping, then these variables can be fetched by ``fetch_list`` . Args: cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes as many arguments as ``loop_vars`` . body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` . loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` . is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False. name(str, optional): Normally there is no need for users to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None. Returns: A list or tuple of Tensors or LoDTensorArrays which returned by ``body`` . Examples: .. code-block:: python import paddle paddle.enable_static() def cond(i, ten): return i < ten def body(i, ten): i = i + 1 return [i, ten] main_program = paddle.static.default_main_program() startup_program = paddle.static.default_startup_program() with paddle.static.program_guard(main_program, startup_program): i = paddle.full(shape=[1], fill_value=0, dtype='int64') # loop counter ten = paddle.full(shape=[1], fill_value=10, dtype='int64') # loop length i, ten = paddle.static.nn.while_loop(cond, body, [i, ten]) exe = paddle.static.Executor(paddle.CPUPlace()) res = exe.run(main_program, feed={}, fetch_list=[i]) print(res) # [array([10])] """ helper = LayerHelper('while_loop', **locals()) if not callable(cond): raise TypeError("cond in while_loop should be callable") if not callable(body): raise TypeError("body in while_loop should be callable") check_type(loop_vars, 'loop_vars', (list, tuple), 'fluid.layers.while_loop') if len(loop_vars) == 0: raise ValueError("loop_vars in while_loop should not be empty") pre_cond = cond(*loop_vars) check_variable_and_dtype( pre_cond, 'var of cond returned', ['bool'], 'fluid.layers.while_loop' ) if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1: raise TypeError( "the shape of the variable returned by cond should be [1]," "but given shape as {0}.".format(list(pre_cond.shape)) ) if _non_static_mode(): now_cond = pre_cond.numpy()[0] while now_cond: output_vars = body(*loop_vars) if not isinstance(output_vars, (list, tuple)): output_vars = [output_vars] if len(output_vars) != len(loop_vars): raise ValueError( "body in while_loop should return the same arity " "(length and structure) and types as loop_vars" ) now_cond = cond(*output_vars).numpy()[0] map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars) return loop_vars while_loop_block = While(pre_cond, is_test, name) has_mutable_vars_in_loop = hold_mutable_vars(loop_vars) with while_loop_block.block(): # If a variable with mutable type is included in loop_vars, like `dict/list`, # modifying it in the body function will cause origin variable to be modified # synchronously. This will raise an assignment error out of while block. # Here we make a copy of the mutable vars to avoid this problem. if has_mutable_vars_in_loop: new_loop_vars = copy_mutable_vars(loop_vars) output_vars = body(*new_loop_vars) else: output_vars = body(*loop_vars) if not isinstance(output_vars, (list, tuple)): output_vars = [output_vars] try: loop_vars = _deal_with_undefined_var(output_vars, loop_vars) assert_same_structure(output_vars, loop_vars, check_types=False) except ValueError as e: raise ValueError( "body in while_loop should return the same arity " "(length and structure) as loop_vars: {0}".format(e) ) now_cond = cond(*output_vars) map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars) assign(now_cond, pre_cond) return loop_vars def _deal_with_undefined_var(output_vars, loop_vars): """Deal with undefined var cases, We create undefined variable based on the results of body(). In Dy2Static, we use undefined var to represent the var created in control flow. This function expand the loop_vars and replace original loop_vars. 1. UndefinedVar = Variable # create a variable 2. UndefinedVar = None # create a undefined var with RETURN_NO_VALUE_MAGIC_NUM 3. UndefinedVar = List(int) # create a list of variable 4. UndefinedVar = value # create a variable """ from paddle.fluid.dygraph.dygraph_to_static.utils import ( UndefinedVar, create_undefined_variable, ) def create_var_like(o_var): if ( isinstance(o_var, (Variable,) + support_ret_buildin_type) or o_var is None ): return create_undefined_variable() if is_sequence(o_var): """ Create a complex container class inside the body of while, including Python list and python Dict """ return map_structure(lambda x: create_undefined_variable(), o_var) if len(output_vars) != len(loop_vars): raise ValueError("The length of loop_vars should be the same.") results = [] for o_var, l_var in zip(output_vars, loop_vars): if isinstance(l_var, UndefinedVar) or l_var is None: results.append(create_var_like(o_var)) else: results.append(l_var) return results def lod_rank_table(x, level=0): """ LoD Rank Table Operator. Given an input variable **x** and a level number of LoD, this layer creates a LodRankTable object. A LoDRankTable object contains a list of bi-element tuples. Each tuple consists of an index and a length, both of which are int type. Refering to specified level of LoD, the index is the sequence index number and the length represents the sequence length. Please note that the list is ranked in descending order by the length. The following is an example: .. code-block:: text x is a LoDTensor: x.lod = [[2, 1], [5, 1, 1]] x.data = [a, b, c, d, e, f, g] 1. set level to 0: Create lod rank table: lod_rank_table_obj = lod_rank_table(x, level=0) Get: lod_rank_table_obj.items() = [(0, 2), (1, 1)] 2. set level to 1: Create lod rank table: lod_rank_table_obj = lod_rank_table(x, level=1) Get: lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)] Args: x (Variable): Input variable, a LoDTensor based which to create the lod rank table. level (int): Specify the LoD level, on which to create the lod rank table. Returns: Variable: The created LoDRankTable object. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1) out = layers.lod_rank_table(x=x, level=0) """ check_type(x, 'x', (Variable, list), 'lod_rank_table') if isinstance(x, (list)): for i, input_x in enumerate(x): check_type( input_x, 'input[' + str(i) + ']', Variable, 'lod_rank_table' ) helper = LayerHelper("lod_rank_table", **locals()) table = helper.create_variable( type=core.VarDesc.VarType.LOD_RANK_TABLE, name=unique_name.generate("lod_rank_table"), ) helper.append_op( type='lod_rank_table', inputs={'X': x}, outputs={'Out': table}, attrs={'level': level}, ) return table @templatedoc() def max_sequence_len(rank_table): """ ${comment} >>> import paddle.fluid as fluid >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32', >>> lod_level=1) >>> rank_table = layers.lod_rank_table(x=x, level=0) >>> max_seq_len = layers.max_sequence_len(rank_table) Args: rank_table(${rank_table_type}): ${rank_table_comment}. Returns: ${out_comment}. """ helper = LayerHelper("max_seqence_len", **locals()) res = helper.create_variable_for_type_inference(dtype="int64") helper.append_op( type="max_sequence_len", inputs={"RankTable": rank_table}, outputs={"Out": res}, ) return res def lod_tensor_to_array(x, table): """ Convert a LoDTensor to a LoDTensorArray. This function split a LoDTesnor to a LoDTensorArray according to its LoD information. LoDTensorArray is an alias of C++ std::vector in PaddlePaddle. The generated LoDTensorArray of this function can be further read or written by `read_from_array()` and `write_to_array()` operators. However, this function is generally an internal component of PaddlePaddle `DynamicRNN`. Users should not use it directly. Args: x (Variable|list): The LoDTensor to be converted to a LoDTensorArray. table (ParamAttr|list): The variable that stores the level of lod which is ordered by sequence length in descending order. It is generally generated by `layers.lod_rank_table()` API. Returns: Variable: The LoDTensorArray that has been converted from the input tensor. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.layers.data(name='x', shape=[10]) table = fluid.layers.lod_rank_table(x, level=0) array = fluid.layers.lod_tensor_to_array(x, table) """ check_type(x, 'x', (Variable, list), 'lod_tensor_to_array') if isinstance(x, (list)): for i, input_x in enumerate(x): check_type( input_x, 'input[' + str(i) + ']', Variable, 'lod_tensor_to_array', ) check_type(table, 'table', (Variable, list), 'lod_tensor_to_array') if isinstance(table, (list)): for i, table_x in enumerate(table): check_type( table_x, 'table[' + str(i) + ']', Variable, 'lod_tensor_to_array', ) helper = LayerHelper("lod_tensor_to_array", **locals()) array = helper.create_variable( name=unique_name.generate("lod_tensor_to_array"), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=x.dtype, ) helper.append_op( type='lod_tensor_to_array', inputs={'X': x, 'RankTable': table}, outputs={'Out': array}, ) return array def array_to_lod_tensor(x, table): """Convert a LoD_Tensor_Aarry to an LoDTensor. Args: x (Variable|list): The lod tensor array to be converted to a tensor. table (ParamAttr|list): The variable that stores the level of lod which is ordered by sequence length in descending order. Returns: Variable: The variable of type tensor that has been converted from an array. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.layers.data(name='x', shape=[10]) table = fluid.layers.lod_rank_table(x, level=0) array = fluid.layers.lod_tensor_to_array(x, table) lod_tensor = fluid.layers.array_to_lod_tensor(array, table) """ check_type(x, 'x', (Variable, list), 'array_to_lod_tensor') if isinstance(x, (list)): for i, input_x in enumerate(x): check_type( input_x, 'input[' + str(i) + ']', Variable, 'array_to_lod_tensor', ) check_type(table, 'table', (Variable, list), 'array_to_lod_tensor') if isinstance(table, (list)): for i, table_x in enumerate(table): check_type( table_x, 'table[' + str(i) + ']', Variable, 'array_to_lod_tensor', ) helper = LayerHelper("array_to_lod_tensor", **locals()) tmp = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="array_to_lod_tensor", inputs={'X': x, 'RankTable': table}, outputs={'Out': tmp}, ) return tmp def increment(x, value=1.0, in_place=True): """ The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`. Notice that the number of elements in :attr:`x` must be equal to 1. Parameters: x (Variable): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64. value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0. in_place (bool, optional): Whether the OP should be performed in-place. Default: True. Returns: Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`. Examples: .. code-block:: python import paddle.fluid as fluid counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.] fluid.layers.increment(counter) # [1.] """ if in_dygraph_mode(): return _C_ops.increment_(x, value) check_variable_and_dtype( x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment' ) helper = LayerHelper("increment", **locals()) if not in_place: out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = x helper.append_op( type='increment', inputs={'X': [x]}, outputs={'Out': [out]}, attrs={'step': float(value)}, ) return out def array_write(x, i, array=None): """ This OP writes the input ``x`` into the i-th position of the ``array`` :ref:`api_fluid_LoDTensorArray` and returns the modified array. If ``array`` is none, a new LoDTensorArray will be created and returned. This OP is often used together with :ref:`api_fluid_layers_array_read` OP. Args: x (Variable): The input data to be written into array. It's multi-dimensional Tensor or LoDTensor. Data type: float32, float64, int32, int64. i (Variable): 1-D Tensor with shape [1], which represents the position into which ``x`` is written. Data type: int64. array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written. The default value is None, when a new LoDTensorArray will be created and returned as a result. Returns: Variable: The input ``array`` after ``x`` is written into. Examples: .. code-block:: python import paddle.fluid as fluid tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5) i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) # Write tmp into the position of arr with subscript 10 and return arr. arr = fluid.layers.array_write(tmp, i=i) # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read # the data at subscript 10 and print it out. item = fluid.layers.array_read(arr, i=i) input = fluid.layers.Print(item, message="The content of i-th LoDTensor:") main_program = fluid.default_main_program() exe = fluid.Executor(fluid.CPUPlace()) exe.run(main_program) # The printed result is: # 1570533133 The content of i-th LoDTensor: The place is:CPUPlace # Tensor[array_read_0.tmp_0] # shape: [3,2,] # dtype: l # data: 5,5,5,5,5,5, # the output is 2-D Tensor with shape [3,2], which is tmp above. # dtype is the corresponding C++ data type, which may vary in different environments. # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, # so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, # and '__int64' on Windows. They both represent 64-bit integer variables. """ if _non_static_mode(): assert isinstance( x, Variable ), "The input data 'x' in array_write must be Variable in dygraph mode" assert isinstance( i, Variable ), "The index 'i' in array_write must be Variable in dygraph mode" assert i.shape == [ 1 ], "The shape of index 'i' should be [1] in dygraph mode" i = i.numpy().item(0) if array is None: array = create_array(x.dtype) assert isinstance( array, list ), "The 'array' in array_write must be a list in dygraph mode" assert i <= len( array ), "The index 'i' should not be greater than the length of 'array' in dygraph mode" if i < len(array): array[i] = x else: array.append(x) return array check_variable_and_dtype(i, 'i', ['int64'], 'array_write') check_type(x, 'x', (Variable), 'array_write') helper = LayerHelper('array_write', **locals()) if array is not None: if ( not isinstance(array, Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY ): raise TypeError( "array should be tensor array vairable in array_write Op" ) if array is None: array = helper.create_variable( name="{0}.out".format(helper.name), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=x.dtype, ) helper.append_op( type='write_to_array', inputs={'X': [x], 'I': [i]}, outputs={'Out': [array]}, ) return array def create_array(dtype, initialized_list=None): """ This OP creates an LOD_TENSOR_ARRAY. It is used as the input of :ref:`api_fluid_layers_array_read` and :ref:`api_fluid_layers_array_write`. Also it can be used with :ref:`api_fluid_layers_While` to create RNN network. Args: dtype (str): The data type of the elements in the lod_tensor_array. Support data type: float32, float64, int32, int64. initialized_list(list): Used to initialize as default value for created array. All values in initialized list should be a Tensor. Returns: Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray. """ array = [] if initialized_list is not None: if not isinstance(initialized_list, (list, tuple)): raise TypeError( "Require type(initialized_list) should be list/tuple, but received {}".format( type(initialized_list) ) ) array = list(initialized_list) # NOTE: Only support plain list like [x, y,...], not support nested list in static mode. for val in array: if not isinstance(val, Variable): raise TypeError( "All values in `initialized_list` should be Variable, but recevied {}.".format( type(val) ) ) if _non_static_mode(): return array helper = LayerHelper("array", **locals()) tensor_array = helper.create_variable( name="{0}.out".format(helper.name), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=dtype, ) for val in array: array_write(x=val, i=array_length(tensor_array), array=tensor_array) return tensor_array @templatedoc() def less_than(x, y, force_cpu=None, cond=None, name=None): """ ${comment} Args: x(Tensor): ${x_comment}. y(Tensor): ${y_comment}. force_cpu(${force_cpu_type}): ${force_cpu_comment}. cond(Tensor, optional): Optional output which can be any created Tensor that meets the requirements to store the result of *less_than*. if cond is None, a new Tensor will be created to store the result. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: ${out_comment}. Examples: .. code-block:: python import paddle x = paddle.to_tensor([1, 2, 3, 4], dtype='float32') y = paddle.to_tensor([2, 2, 1, 3], dtype='float32') result = paddle.less_than(x, y) print(result) # [True, False, False, False] """ check_variable_and_dtype( x, "x", ["float32", "float64", "int32", "int64"], "less_than" ) check_variable_and_dtype( y, "y", ["float32", "float64", "int32", "int64"], "less_than" ) if cond is not None: check_type(cond, "cond", Variable, "less_than") if force_cpu is not None: check_type(force_cpu, "force_cpu", bool, "less_than") helper = LayerHelper("less_than", **locals()) if cond is None: cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True attrs = dict() if force_cpu is not None: attrs['force_cpu'] = force_cpu helper.append_op( type='less_than', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}, attrs=attrs, ) return cond @templatedoc() def less_equal(x, y, cond=None, name=None): """ :alias_main: paddle.less_equal :alias: paddle.less_equal,paddle.tensor.less_equal,paddle.tensor.logic.less_equal :old_api: paddle.fluid.layers.less_equal This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`. Args: x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *less_equal*. if cond is None, a new Varibale will be created to store the result. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np label = fluid.layers.assign(np.array([1, 3], dtype='int32')) limit = fluid.layers.assign(np.array([1, 2], dtype='int32')) out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False] out1 = label<= limit #out1=[True, False] """ check_variable_and_dtype( x, "x", ["float32", "float64", "int32", "int64"], "less_equal" ) check_variable_and_dtype( y, "y", ["float32", "float64", "int32", "int64"], "less_equal" ) if cond is not None: check_type(cond, "cond", Variable, "less_equal") helper = LayerHelper("less_equal", **locals()) if cond is None: cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True attrs = dict() helper.append_op( type='less_equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}, attrs=attrs, ) return cond @templatedoc() def greater_than(x, y, cond=None, name=None): """ :alias_main: paddle.greater_than :alias: paddle.greater_than,paddle.tensor.greater_than,paddle.tensor.logic.greater_than :old_api: paddle.fluid.layers.greater_than This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`. Args: x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_than*. if cond is None, a new Varibale will be created to store the result. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x` . Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np label = fluid.layers.assign(np.array([2, 3], dtype='int32')) limit = fluid.layers.assign(np.array([3, 2], dtype='int32')) out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True] out1 = label > limit #out1=[False, True] """ check_variable_and_dtype( x, "x", ["float32", "float64", "int32", "int64"], "greater_than" ) check_variable_and_dtype( y, "y", ["float32", "float64", "int32", "int64"], "greater_than" ) if cond is not None: check_type(cond, "cond", Variable, "greater_than") helper = LayerHelper("greater_than", **locals()) if cond is None: cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True attrs = dict() if in_dygraph_mode(): return _C_ops.greater_than(x, y) else: helper.append_op( type='greater_than', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}, attrs=attrs, ) return cond @templatedoc() def greater_equal(x, y, cond=None, name=None): """ :alias_main: paddle.greater_equal :alias: paddle.greater_equal,paddle.tensor.greater_equal,paddle.tensor.logic.greater_equal :old_api: paddle.fluid.layers.greater_equal This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`. Args: x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_equal*. if cond is None, a new Varibale will be created to store the result. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np label = fluid.layers.assign(np.array([2, 2], dtype='int32')) limit = fluid.layers.assign(np.array([2, 3], dtype='int32')) out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False] out_1 = label >= limit #out1=[True, False] """ check_variable_and_dtype( x, "x", ["float32", "float64", "int32", "int64"], "greater_equal" ) check_variable_and_dtype( y, "y", ["float32", "float64", "int32", "int64"], "greater_equal" ) if cond is not None: check_type(cond, "cond", Variable, "greater_equal") helper = LayerHelper("greater_equal", **locals()) if cond is None: cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True attrs = dict() helper.append_op( type='greater_equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}, attrs=attrs, ) return cond def equal(x, y, cond=None, name=None): """ This layer returns the truth value of :math:`x == y` elementwise. Args: x(Variable): Tensor, data type is float32, float64, int32, int64. y(Variable): Tensor, data type is float32, float64, int32, int64. cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *equal*. if cond is None, a new Varibale will be created to store the result. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: output Tensor, it's shape is the same as the input's Tensor, and the data type is bool. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np out_cond =fluid.data(name="input1", shape=[2], dtype='bool') label = fluid.layers.assign(np.array([3, 3], dtype="int32")) limit = fluid.layers.assign(np.array([3, 2], dtype="int32")) label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32")) out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False] out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True] """ if in_dygraph_mode(): return _C_ops.equal(x, y) check_variable_and_dtype( x, "x", ["float32", "float64", "int32", "int64"], "equal" ) check_variable_and_dtype( y, "y", ["float32", "float64", "int32", "int64"], "equal" ) if cond is not None: check_type(cond, "cond", Variable, "equal") helper = LayerHelper("equal", **locals()) if cond is None: cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True helper.append_op( type='equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]} ) return cond def not_equal(x, y, cond=None, name=None): """ :alias_main: paddle.not_equal :alias: paddle.not_equal,paddle.tensor.not_equal,paddle.tensor.logic.not_equal :old_api: paddle.fluid.layers.not_equal This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`. Args: x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *not_equal*. if cond is None, a new Varibale will be created to store the result. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`. Examples: .. code-block:: python import paddle.fluid as fluid label = fluid.layers.data(name='label', shape=[1], dtype='int64') limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64') out = fluid.layers.not_equal(x=label, y=limit) """ check_variable_and_dtype( x, "x", ["float32", "float64", "int32", "int64"], "not_equal" ) check_variable_and_dtype( y, "y", ["float32", "float64", "int32", "int64"], "not_equal" ) if cond is not None: check_type(cond, "cond", Variable, "not_equal") helper = LayerHelper("not_equal", **locals()) if cond is None: cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True helper.append_op( type='not_equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]} ) return cond def array_read(array, i): """ This OP is used to read data at the specified position from the input array :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i`` is the specified read position. This OP is often used together with :ref:`api_fluid_layers_array_write` OP. Case 1: :: Input: The shape of first three tensors are [1], and that of the last one is [1,2]: array = ([0.6], [0.1], [0.3], [0.4, 0.2]) And: i = [3] Output: output = [0.4, 0.2] Args: array (LoDTensorArray): The input LoDTensorArray. i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the specified read position of ``array``. Returns: Variable: The LoDTensor or Tensor that is read at the specified position of ``array``. Examples: .. code-block:: python # First we're going to create a LoDTensorArray, then we're going to write the Tensor into # the specified position, and finally we're going to read the Tensor at that position. import paddle.fluid as fluid arr = fluid.layers.create_array(dtype='float32') tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5) i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10 # of the empty-array: arr, then the length of arr becomes 11. arr = fluid.layers.array_write(tmp, i, array=arr) # Read the data of the position with subscript 10. item = fluid.layers.array_read(arr, i) # You can print out the data via executor. input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:") main_program = fluid.default_main_program() exe = fluid.Executor(fluid.CPUPlace()) exe.run(main_program) # The printed result is: # 1569588169 The LoDTensor of the i-th position: The place is:CPUPlace # Tensor[array_read_0.tmp_0] # shape: [3,2,] # dtype: l # data: 5,5,5,5,5,5, # the output is 2-D Tensor with shape [3,2]. # dtype is the corresponding C++ data type, which may vary in different environments. # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, # so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, # and '__int64' on Windows. They both represent 64-bit integer variables. """ if _non_static_mode(): assert isinstance( array, list ), "The 'array' in array_read must be list in dygraph mode" assert isinstance( i, Variable ), "The index 'i' in array_read must be Variable in dygraph mode" assert i.shape == [ 1 ], "The shape of index 'i' should be [1] in dygraph mode" i = i.numpy().item(0) return array[i] check_variable_and_dtype(i, 'i', ['int64'], 'array_read') helper = LayerHelper('array_read', **locals()) if ( not isinstance(array, Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY ): raise TypeError("array should be tensor array vairable") out = helper.create_variable_for_type_inference(dtype=array.dtype) helper.append_op( type='read_from_array', inputs={'X': [array], 'I': [i]}, outputs={'Out': [out]}, ) return out def shrink_memory(x, i, table): """ This function creates an operator to shrink rnn memory using the RankTable as mentioned in the input parameter. NOTE: This API is very low-level API. It is used by DynamicRNN only. Since the Dynamic RNN uses no-padding way to implement RNN. The sequence will be sorted by order, and the length of valid memory will be shrink after each time step. Args: x(Variable): The memory object in the previous time step. i(Variable): The step count variable. A int scalar as LoDTensor. table(Variable): The RNNRankTable object. Returns: the memory variable after shrink. Examples: Since this API is very low level API. The example is not provided. Please reference the implementation of class DynamicRNN for detail usage. """ helper = LayerHelper('shrink_memory', **locals()) check_type(x, 'x', Variable, 'shrink_memory') check_type(i, 'i', Variable, 'shrink_memory') check_type(table, 'table', Variable, 'shrink_memory') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='shrink_rnn_memory', inputs={'X': [x], 'I': [i], 'RankTable': [table]}, outputs={'Out': [out]}, attrs={}, ) return out def array_length(array): """ This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` . It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` , :ref:`api_fluid_layers_While` OP to traverse, read and write LoDTensorArray. Args: array (LoDTensorArray): The input array that will be used to compute the length. Returns: Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64. Examples: .. code-block:: python import paddle.fluid as fluid tmp = fluid.layers.zeros(shape=[10], dtype='int32') i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10, # then the length of arr becomes 11. arr = fluid.layers.array_write(tmp, i=i) # return the length of arr arr_len = fluid.layers.array_length(arr) # You can use executor to print out the length of LoDTensorArray. input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:") main_program = fluid.default_main_program() exe = fluid.Executor(fluid.CPUPlace()) exe.run(main_program) # The printed result is: # 1569576542 The length of LoDTensorArray: The place is:CPUPlace # Tensor[array_length_0.tmp_0] # shape: [1,] # dtype: l # data: 11, # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray # is 11. # dtype is the corresponding C++ data type, which may vary in different environments. # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, # so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, # and '__int64' on Windows. They both represent 64-bit integer variables. """ if _non_static_mode(): assert isinstance( array, list ), "The 'array' in array_write must be a list in dygraph mode" return len(array) if ( not isinstance(array, Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY ): raise TypeError( "array should be tensor array vairable in array_length Op" ) helper = LayerHelper('array_length', **locals()) tmp = helper.create_variable_for_type_inference(dtype='int64') tmp.stop_gradient = True helper.append_op( type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]} ) return tmp class ConditionalBlockGuard(BlockGuard): """ ConditionalBlockGuard is derived from BlockGuard. It is dedicated for holding a ConditionalBlock, and helping users entering and exiting the ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard is generally an internal component of IfElse, users should not use it directly. """ def __init__(self, block): check_type(block, "block", ConditionalBlock, "ConditionalBlockGuard") super().__init__(block.helper.main_program) self.block = block def __enter__(self): return super().__enter__() def __exit__(self, exc_type, exc_val, exc_tb): self.block.complete() return super().__exit__(exc_type, exc_val, exc_tb) class ConditionalBlock: ''' **ConditionalBlock** ConditionalBlock is an operator that bind a block to a specific condition, if the condition matches, the corresponding block will be executed. Args: inputs (Variable): bool conditions. is_scalar_condition (bool): whether the branch is controlled by a scalar. name(str): name of this ConditionalBlock. Examples: .. code-block:: python import paddle.fluid as fluid cond = layers.less_than(x=label, y=limit) true_image, false_image = layers.split_lod_tensor( input=image, mask=cond) true_cond = layers.ConditionalBlock([true_image]) with true_cond.block(): ... with false_cond.block(): ... ''' def __init__(self, inputs, is_scalar_condition=False, name=None): for each_input in inputs: check_type(each_input, "input", Variable, "ConditionalBlock") self.inputs = inputs self.is_scalar_condition = is_scalar_condition self.helper = LayerHelper('conditional_block', name=name) def block(self): return ConditionalBlockGuard(self) def complete(self): inside_block = self.helper.main_program.current_block() parent_block = self.helper.main_program.block(inside_block.parent_idx) intermediate = set() params = set() params, intermediate = get_inputs_outputs_in_block( inside_block, params, intermediate, helper=self.helper ) # Todo(liym27) Here assume that all params are in recursive parent block # but when minimize() called in control flow, some params may be in # conditional grad block param_list = [ parent_block._var_recursive(each_name) for each_name in params ] out_list = [] for inner_out_name in intermediate: inner_var = parent_block._find_var_recursive(inner_out_name) if inner_var: out_list.append(inner_var) step_scope = parent_block.create_var( type=core.VarDesc.VarType.STEP_SCOPES ) conditional_block_op = parent_block.append_op( type='conditional_block', inputs={ 'Cond': self.inputs, 'Input': param_list, }, outputs={'Out': out_list, 'Scope': [step_scope]}, attrs={ 'sub_block': inside_block, 'is_scalar_condition': self.is_scalar_condition, }, ) if self.need_append_conditional_block_grad(inside_block): self.append_conditional_block_grad( parent_block, inside_block, conditional_block_op ) def need_append_conditional_block_grad(self, inside_block): grad_sub_block_idx = inside_block.backward_block_idx inside_block_idx = inside_block.idx # if inside_block have grad_block and grad_block is not itself, # we will append conditional block grad. return ( grad_sub_block_idx != -1 and grad_sub_block_idx != inside_block_idx ) def append_conditional_block_grad( self, parent_block, inside_block, conditional_block_op ): ''' Append op `conditional_block_grad` manually. When `optimizer.minimize/append_backward` is called in Paddle control flow, grad ops will be appended before appending op `conditional_block` so that op `conditional_block_grad` can't be appended when calling `optimizer.minimize/append_backward`. After appending op `conditional_block`, `conditional_block_grad` is appended manually. Args: parent_block (Block): The block that `conditional_block_op` blongs to. inside_block (Block): The sub block of `conditional_block_op`. conditional_block_op (Operator): The forward op conditional_block. ''' grad_sub_block_idx = inside_block.backward_block_idx grad_sub_block = self.helper.main_program.block(grad_sub_block_idx) intermediate = set() params = set() for each_op in grad_sub_block.ops: assert isinstance(each_op, Operator) for iname in each_op.input_names: for in_var_name in each_op.input(iname): if in_var_name not in intermediate: params.add(in_var_name) for oname in each_op.output_names: for out_var_name in each_op.output(oname): intermediate.add(out_var_name) param_list = [] for inner_input_name in params: inner_var = parent_block._find_var_recursive(inner_input_name) if inner_var: param_list.append(inner_var.name) grad_op_desc, op_grad_to_var = core.get_grad_op_desc( conditional_block_op.desc, set(), [grad_sub_block.desc] ) # append op_desc in grad_op_descs to target_block op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName() backward = core.op_proto_and_checker_maker.OpRole.Backward new_op_desc = parent_block.desc.append_op() new_op_desc.copy_from(grad_op_desc[0]) new_op_desc._set_attr(op_role_attr_name, backward) # set input and output manually new_op_desc.set_input('Input', param_list) new_op_desc.set_output( 'Input@GRAD', [param + "@GRAD" for param in param_list] ) new_vars = set() for grad_var_name in new_op_desc.output_arg_names(): if ( grad_sub_block.desc.has_var_recursive(grad_var_name.encode()) or grad_var_name == core.empty_var_name() ): continue grad_sub_block.desc.var(grad_var_name.encode()) new_vars.add(grad_var_name) if grad_var_name not in op_grad_to_var: continue # infer_shape and infer_type new_op_desc.infer_var_type(grad_sub_block.desc) new_op_desc.infer_shape(grad_sub_block.desc) for arg in new_op_desc.output_arg_names(): if arg in new_vars: _infer_var_data_type_shape_(arg, grad_sub_block) self.helper.main_program._sync_with_cpp() def copy_var_to_parent_block(var, layer_helper): if not isinstance(var, Variable): return var prog = layer_helper.main_program parent_idx = prog.current_block().parent_idx assert ( parent_idx >= 0 ), "Got wrong parent block index when assigning var to parent scope in control_flow" parent_block = prog.block(parent_idx) if ( var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY and parent_block._find_var_recursive(var.name) ): parent_block_var = var else: parent_block_var = parent_block.create_var( dtype=var.dtype, shape=var.shape, type=var.type ) assign(var, parent_block_var) return parent_block_var def cond(pred, true_fn=None, false_fn=None, name=None, return_names=None): """ This API returns ``true_fn()`` if the predicate ``pred`` is true else ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to ``None`` if do nothing and this API will treat the callable simply returns ``None`` in this case. ``true_fn`` and ``false_fn`` should return same nest structure of tensors or both return ``None`` if user doens't like to return anything. A nest structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or list of tensors. Note: 1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have the same shape because of dataflow model of PaddlePaddle while the tensors in the tuples or the lists can have different shapes. 2. This API could be used under both static mode or dygraph mode. If it is in dygraph mode, the API only runs one branch based on condition. 3. If it is in static mode, any tensors or operations created outside or inside of ``true_fn`` and ``false_fn`` will be in net building regardless of which branch is selected at runtime. This has frequently surprised users who expected a lazy semantics. For example: .. code-block:: python import paddle a = paddle.zeros((1, 1)) b = paddle.zeros((1, 1)) c = a * b out = paddle.static.nn.cond(a < b, lambda: a + c, lambda: b * b) No matter whether ``a < b`` , ``c = a * b`` will be in net building and run. ``a + c`` and ``b * b`` will be in net building, but only one branch will be executed during runtime. Args: pred(Tensor): A boolean tensor whose numel should be 1. The boolean value determines whether to return the result of ``true_fn`` or ``false_fn`` . true_fn(callable, optional): A callable to be performed if ``pred`` is true. The default value is ``None`` . false_fn(callable, optional): A callable to be performed if ``pred`` is false. The default value is ``None`` . name(str, optional): The default value is ``None`` . Normally users don't have to set this parameter. For more information, please refer to :ref:`api_guide_Name` . return_names(sequence of string, optional): The default value is ``None`` . Normally users don't have to set this parameters. A sequence of strings to represents the name of returned vars. The structure of sequence must be same with return values of true_fn and false_fn. Returns: Tensor|list(Tensor)|tuple(Tensor): returns ``true_fn()`` if the predicate ``pred`` is true else ``false_fn()`` . Raises: TypeError: if ``true_fn`` or ``false_fn`` is not callable. ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest structure of tensors. Examples: .. code-block:: python import paddle # # pseudocode: # if 0.1 < 0.23: # return 1, True # else: # return 3, 2 # def true_func(): return paddle.full(shape=[1, 2], dtype='int32', fill_value=1), paddle.full(shape=[2, 3], dtype='bool', fill_value=True) def false_func(): return paddle.full(shape=[3, 4], dtype='float32', fill_value=3), paddle.full(shape=[4, 5], dtype='int64', fill_value=2) x = paddle.full(shape=[1], dtype='float32', fill_value=0.1) y = paddle.full(shape=[1], dtype='float32', fill_value=0.23) pred = paddle.less_than(x=x, y=y, name=None) ret = paddle.static.nn.cond(pred, true_func, false_func) # ret is a tuple containing 2 tensors # ret[0] = [[1 1]] # ret[1] = [[ True True True] # [ True True True]] """ if _non_static_mode(): assert isinstance(pred, Variable), "The pred in cond must be Variable" assert pred.size == 1, "condition input's numel should be 1" pred = pred.numpy()[0] if pred: if true_fn is not None: if not callable(true_fn): raise TypeError( "The true_fn in cond must be callable, but received {}".format( type(true_fn).__name__ ) ) return true_fn() else: if false_fn is not None: if not callable(false_fn): raise TypeError( "The false_fn in cond must be callable, but received {}".format( type(false_fn).__name__ ) ) return false_fn() return None check_variable_and_dtype(pred, "pred", ['bool'], "fluid.layers.cond") check_type(name, "name", (str, type(None)), "fluid.layers.cond") helper = LayerHelper('cond', **locals()) true_output = None false_output = None copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper) if true_fn is not None: if not callable(true_fn): raise TypeError( "The true_fn in cond must be callable, but received {}".format( type(true_fn).__name__ ) ) true_cond_block = ConditionalBlock([pred], is_scalar_condition=True) with true_cond_block.block(): origin_true_output = true_fn() if origin_true_output is not None: true_output = map_structure( copy_to_parent_func, origin_true_output ) if false_fn is not None: if not callable(false_fn): raise TypeError( "The false_fn in cond must be callable, but received {}".format( type(false_fn).__name__ ) ) false_cond_block = ConditionalBlock( [paddle.logical_not(pred)], is_scalar_condition=True ) with false_cond_block.block(): origin_false_output = false_fn() if origin_false_output is not None: false_output = map_structure( copy_to_parent_func, origin_false_output ) if true_output is None and false_output is None: return None if true_output is None: raise ValueError( "Incompatible return values of true_fn and false_fn in cond: " "true_fn returns None while false_fn returns non-None" ) if false_output is None: raise ValueError( "Incompatible return values of true_fn and false_fn in cond: " "true_fn returns non-None while false_fn returns None" ) # Merge true and false output if they are not None if return_names is None: is_dy2staic = False return_names = ["no name"] * len(_to_sequence_except_dict(true_output)) else: """ dy2static will set the return_names and expand the return values to UndefinedVar. """ is_dy2staic = True # TODO: expand_undefined_var will replace None to Undefinedvar(), to fix cases like: # a = None # if condition: # a = 1 # Because we can not use variable to express 'None' true_output, false_output = expand_undefined_var( true_output, false_output, return_names ) if len(_to_sequence_except_dict(true_output)) != len( _to_sequence_except_dict(false_output) ): raise ValueError( "true fn returns {} vars, but false fn returns {} vars, which is not equals".format( len(_to_sequence_except_dict(true_output)), len(_to_sequence_except_dict(false_output)), ) ) for true_out, false_out, return_name in zip( _to_sequence_except_dict(true_output), _to_sequence_except_dict(false_output), _to_sequence_except_dict(return_names), ): try: assert_same_structure(true_out, false_out, check_types=False) except ValueError as e: raise ValueError( "Incompatible return values of `{}` in true_fn and false_fn in cond: {}".format( return_name, e ) ) def check_ret_none(seq_true, seq_false, seq_names): for f_true, f_false, f_name in zip(seq_true, seq_false, seq_names): f_true = flatten(f_true) f_false = flatten(f_false) for idx in range(len(f_true)): if ( f_true[idx] is None and f_false[idx] is not None or f_false[idx] is None and f_true[idx] is not None ): warnings.warn( "In cond : Var '{}' or part of it is set differently in ifelse branchs, " "<{}, {}> in true branch and <{}, {}> in false branch. Set var to " "'None' in ifelse block might lead to error.".format( f_name, type(f_true[idx]), f_true[idx], type(f_false[idx]), f_false[idx], ) ) check_ret_none( _to_sequence_except_dict(true_output), _to_sequence_except_dict(false_output), _to_sequence_except_dict(return_names), ) if is_dy2staic: true_output, false_output = change_none_to_undefinedvar( true_output, false_output ) mask = cast(pred, dtype='int32') merge_func = ( lambda name, false_var, true_var: select_input_with_buildin_type( [false_var, true_var], mask, name ) ) def merge_every_var_list(false_vars, true_vars, name): return map_structure(partial(merge_func, name), false_vars, true_vars) merged_output = list( map( merge_every_var_list, _to_sequence_except_dict(false_output), _to_sequence_except_dict(true_output), _to_sequence_except_dict(return_names), ) ) merged_output = pack_sequence_as(false_output, flatten(merged_output)) return merged_output def change_none_to_undefinedvar(nest1, nest2): from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar def map_fn(x): if x is None: return UndefinedVar("padding") return x nest1_out = pack_sequence_as(nest1, list(map(map_fn, flatten(nest1)))) nest2_out = pack_sequence_as(nest2, list(map(map_fn, flatten(nest2)))) return nest1_out, nest2_out def _to_sequence_except_dict(x): """ In this function, dict is not viewed as sequence. """ if isinstance(x, dict): return [x] return to_sequence(x) def _is_sequence_except_dict(x): """ In this function, dict is not viewed as sequence. """ if isinstance(x, dict): return False return is_sequence(x) def expand_undefined_var(nest1, nest2, names): """TODO: make this function recursively. nest1: Var1, (UndefinedVar, [1,2,3]) nest2: Var2, ([1,2,3,4], UndefinedVar) In this case, we should not expand recursively. """ from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar from paddle.fluid.dygraph.dygraph_to_static.return_transformer import ( RETURN_VALUE_PREFIX, ) def pack_undefined_var_as(seq): return pack_sequence_as( seq, [UndefinedVar("padding") for i in flatten(seq)] ) def map_fn(n1, n2, name, order): if not name.startswith(RETURN_VALUE_PREFIX) and ( isinstance(n1, UndefinedVar) or n1 is None ): if n1 is None and n2 is not None: if order == 0: warnings.warn( "In cond : Var '{}' or part of it is set differently in ifelse branchs, " "<{}, {}> in true branch and <{}, {}> in false branch. Set var to " "'None' in ifelse block might lead to error.".format( name, type(n1), n1, type(n2), n2 ) ) else: warnings.warn( "In cond : Var '{}' or part of it is set differently in ifelse branchs, " "<{}, {}> in true branch and <{}, {}> in false branch. Set var to " "'None' in ifelse block might lead to error.".format( name, type(n2), n2, type(n1), n1 ) ) return pack_undefined_var_as(n2) return n1 nest1_out = list( map( map_fn, _to_sequence_except_dict(nest1), _to_sequence_except_dict(nest2), _to_sequence_except_dict(names), [0 for i in _to_sequence_except_dict(names)], ) ) nest2_out = list( map( map_fn, _to_sequence_except_dict(nest2), _to_sequence_except_dict(nest1), _to_sequence_except_dict(names), [1 for i in _to_sequence_except_dict(names)], ) ) if not _is_sequence_except_dict(nest1): nest1_out = nest1_out[0] if not _is_sequence_except_dict(nest2): nest2_out = nest2_out[0] return nest1_out, nest2_out def _error_message(what, arg_name, op_name, right_value, error_value): error_message = ( "{what} of '{arg_name}' in {op_name} must be " "{right_value}, but received: {error_value}.".format( what=what, arg_name=arg_name, op_name=op_name, right_value=right_value, error_value=error_value, ) ) return error_message def case(pred_fn_pairs, default=None, name=None): ''' :api_attr: Static Graph This operator works like an if-elif-elif-else chain. Args: pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors. default(callable, optional): Callable that returns a structure of Tensors. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor|list(Tensor): Tensors returned by the callable from the first pair whose pred is True, or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None, or Tensors returned by the last callable in ``pred_fn_pairs`` if no pred in ``pred_fn_pairs`` is True and ``default`` is None. Raises: TypeError: If the type of ``pred_fn_pairs`` is not list or tuple. TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple. TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2. TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not a Tensor. TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable. TypeError: If ``default`` is not None but it is not callable. Examples: .. code-block:: python import paddle paddle.enable_static() def fn_1(): return paddle.full(shape=[1, 2], dtype='float32', fill_value=1) def fn_2(): return paddle.full(shape=[2, 2], dtype='int32', fill_value=2) def fn_3(): return paddle.full(shape=[3], dtype='int32', fill_value=3) main_program = paddle.static.default_startup_program() startup_program = paddle.static.default_main_program() with paddle.static.program_guard(main_program, startup_program): x = paddle.full(shape=[1], dtype='float32', fill_value=0.3) y = paddle.full(shape=[1], dtype='float32', fill_value=0.1) z = paddle.full(shape=[1], dtype='float32', fill_value=0.2) pred_1 = paddle.less_than(z, x) # true: 0.2 < 0.3 pred_2 = paddle.less_than(x, y) # false: 0.3 < 0.1 pred_3 = paddle.equal(x, y) # false: 0.3 == 0.1 # Call fn_1 because pred_1 is True out_1 = paddle.static.nn.case( pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3) # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called. # because fn_3 is the last callable in pred_fn_pairs. out_2 = paddle.static.nn.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]) exe = paddle.static.Executor(paddle.CPUPlace()) res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2]) print(res_1) # [[1. 1.]] print(res_2) # [3 3 3] ''' helper = LayerHelper('case', **locals()) def _case_check_args(pred_fn_pairs, default): ''' Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default. ''' check_type(pred_fn_pairs, 'pred_fn_pairs', (list, tuple), 'case') for pred_fn in pred_fn_pairs: if not isinstance(pred_fn, tuple): raise TypeError( _error_message( "The elements' type", "pred_fn_pairs", "case", tuple, type(pred_fn), ) ) if len(pred_fn) != 2: raise TypeError( _error_message( "The tuple's size", "pred_fn_pairs", "case", "2", str(len(pred_fn)) + "-tuple", ) ) pred, fn = pred_fn if not isinstance(pred, Variable): raise TypeError( _error_message( "The pred's type", "pred_fn_pairs", "case", "boolean Variable", type(pred), ) ) if not callable(fn): raise TypeError( "The fn for {} of pred_fn_pairs in Op(case) must" " be callable.".format(pred.name) ) if default is None: default_index = len(pred_fn_pairs) - 1 # pick the last one default = pred_fn_pairs[default_index][1] pred_fn_pairs = pred_fn_pairs[:default_index] elif not callable(default): raise TypeError("The default in Op(case) must be callable.") return pred_fn_pairs, default pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default) false_fn = default for pred, true_fn in reversed(pred_fn_pairs): false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn) final_fn = false_fn return final_fn() class Switch: """ :api_attr: Static Graph This class is used to implement Switch branch control function. Switch branch contains several case branches and one default branch. Switch control flow checks whether the case branch conditions are satisfied in turn, and only executes the statement after the first case branch that satisfies the conditions. If there is no case branch that satisfies the condition, only the statement following the default branch is executed. Note: A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1]. OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` . Member Functions: case(condition): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed. default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed. Case and default functions can only be used inside the scope of Switch, as shown below: .. code-block:: python ''' with fluid.layers.Switch() as switch: with switch.case(cond1): i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1) with switch.case(cond2): i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2) with switch.default(): i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0) ''' Args: name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Examples: .. code-block:: python import paddle.fluid as fluid lr = fluid.layers.create_global_var( shape=[1], value=0.0, dtype='float32', persistable=True, name="learning_rate") zero_var = fluid.layers.fill_constant( shape=[1], dtype='float32', value=0.0) one_var = fluid.layers.fill_constant( shape=[1], dtype='float32', value=1.0) two_var = fluid.layers.fill_constant( shape=[1], dtype='float32', value=2.0) global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1) with fluid.layers.control_flow.Switch() as switch: with switch.case(global_step == zero_var): fluid.layers.assign(input=one_var, output=lr) with switch.default(): fluid.layers.assign(input=two_var, output=lr) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr]) print(res) # [array([1.], dtype=float32)] """ def __init__(self, name=None): self.helper = LayerHelper('switch', name=name) self.inside_scope = False self.pre_not_conditions = [] def case(self, condition): if not self.inside_scope: raise ValueError("case should be called inside with") check_variable_and_dtype( condition, 'condition', ['bool'], 'the member function case of fluid.layers.Switch', ) if len(self.pre_not_conditions) == 0: cond_block = ConditionalBlock([condition], is_scalar_condition=True) not_cond = paddle.logical_not(x=condition) self.pre_not_conditions.append(not_cond) else: pre_cond_num = len(self.pre_not_conditions) pre_not_cond = self.pre_not_conditions[pre_cond_num - 1] new_not_cond = logical_and( x=pre_not_cond, y=paddle.logical_not(x=condition) ) self.pre_not_conditions.append(new_not_cond) cond_block = ConditionalBlock( [logical_and(x=pre_not_cond, y=condition)], is_scalar_condition=True, ) return ConditionalBlockGuard(cond_block) def default(self): pre_cond_num = len(self.pre_not_conditions) if pre_cond_num == 0: raise ValueError("there should be at least one condition") cond_block = ConditionalBlock( [self.pre_not_conditions[pre_cond_num - 1]], is_scalar_condition=True, ) return ConditionalBlockGuard(cond_block) def __enter__(self): """ set flag that now is inside switch.block {} :return: """ self.inside_scope = True return self def __exit__(self, exc_type, exc_val, exc_tb): self.inside_scope = False if exc_type is not None: return False # re-raise exception return True class IfElseBlockGuard: def __init__(self, is_true, ifelse): if not isinstance(ifelse, IfElse): raise TypeError("ifelse must be an instance of IfElse class") if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS: raise ValueError("You cannot invoke IfElse.block() inside a block") self.is_true = is_true self.ie = ifelse if is_true: self.cond_block = ifelse.conditional_true_block else: self.cond_block = ifelse.conditional_false_block if not isinstance(self.cond_block, ConditionalBlock): raise TypeError("Unexpected situation") self.cond_block = self.cond_block.block() def __enter__(self): self.ie.status = ( IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS ) self.cond_block.__enter__() def __exit__(self, exc_type, exc_val, exc_tb): if not self.cond_block.__exit__(exc_type, exc_val, exc_tb): # re-raise inside exception return False if len(self.ie.output_table[1 if self.is_true else 0]) == 0: raise ValueError("Must set output inside block") self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS class IfElse: """ :api_attr: Static Graph This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run. Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data. Note: A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1]. OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` . IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP. .. code-block:: python # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data. import numpy as np import paddle.fluid as fluid x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False) y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False) x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32) y_d = np.zeros((4, 1)).astype(np.float32) # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor. # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]]. cond = fluid.layers.greater_than(x, y) # Unlike other common OPs, ie below returned by the OP is an IfElse OP object ie = fluid.layers.IfElse(cond) with ie.true_block(): # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10. out_1 = ie.input(x) out_1 = out_1 - 10 ie.output(out_1) with ie.false_block(): # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10 out_1 = ie.input(x) out_1 = out_1 + 10 ie.output(out_1) # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable. output = ie() # [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)] # Get the first Variable in the output List and add all elements. out = fluid.layers.reduce_sum(output[0]) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out]) print(res) # [array([-1.], dtype=float32)] Args: cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable. Internal Functions: The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged. The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged. ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block. ``ie. output (out)`` writes the result to the output of the corresponding condition. There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable. """ OUT_IF_ELSE_BLOCKS = 0 IN_IF_ELSE_TRUE_BLOCKS = 1 IN_IF_ELSE_FALSE_BLOCKS = 2 def __init__(self, cond, name=None): check_type(cond, "cond", Variable, "fluid.layers.IfElse") check_type(name, "name", (str, type(None)), "fluid.layers.IfElse") self.helper = LayerHelper('ifelse', name=name) self.cond = cond self.input_table = {} self.status = IfElse.OUT_IF_ELSE_BLOCKS self.conditional_true_block = ConditionalBlock(inputs=[self.cond]) self.conditional_false_block = ConditionalBlock(inputs=[self.cond]) self.output_table = ([], []) # (true_outs, false_outs) def input(self, x): if self.status == IfElse.OUT_IF_ELSE_BLOCKS: raise ValueError("input must in true/false blocks") if id(x) not in self.input_table: parent_block = self._parent_block() out_true = parent_block.create_var( name=unique_name.generate_with_ignorable_key( 'ifelse_input' + self.helper.name ), dtype=x.dtype, ) out_false = parent_block.create_var( name=unique_name.generate_with_ignorable_key( 'ifelse_input' + self.helper.name ), dtype=x.dtype, ) parent_block.append_op( type='split_lod_tensor', inputs={ 'X': x, 'Mask': self.cond, }, outputs={'OutTrue': out_true, 'OutFalse': out_false}, attrs={'level': 0}, ) self.input_table[id(x)] = (out_true, out_false) else: out_true, out_false = self.input_table[id(x)] if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS: return out_true else: return out_false def _parent_block(self): current_block = self.helper.main_program.current_block() return self.helper.main_program.block(current_block.parent_idx) def true_block(self): return IfElseBlockGuard(True, self) def false_block(self): return IfElseBlockGuard(False, self) def output(self, *outs): if self.status == self.OUT_IF_ELSE_BLOCKS: raise ValueError("output can only be invoked in the sub-block") out_table = self.output_table[ 1 if self.status == self.IN_IF_ELSE_TRUE_BLOCKS else 0 ] parent_block = self._parent_block() for each_out in outs: check_type( each_out, "each output", Variable, "fluid.layers.IfElse.output" ) # create outside tensor outside_out = parent_block.create_var( name=unique_name.generate_with_ignorable_key( "_".join([self.helper.name, 'output']) ), dtype=each_out.dtype, ) out_table.append(outside_out) # assign local var to outside assign(input=each_out, output=outside_out) def __call__(self): if self.status != self.OUT_IF_ELSE_BLOCKS: raise ValueError("IfElse::__call__ must be out of sub-block") false_len, true_len = list(map(len, self.output_table)) if false_len == 0 and true_len == 0: raise ValueError( "Must invoke true_block/false_block before " "__call__" ) elif false_len != true_len and false_len != 0 and true_len != 0: raise ValueError("The output side must be same") elif false_len == 0 or true_len == 0: return self.output_table[0 if false_len != 0 else 1] # else none of false_len/true_len is zero # merge together rlist = [] for false_var, true_var in zip(*self.output_table): rlist.append( merge_lod_tensor( in_true=true_var, in_false=false_var, mask=self.cond, x=self.cond, level=0, ) ) return rlist class DynamicRNN: """ :api_attr: Static Graph **Note: the input of this class should be LoDTensor which holds the information of variable-length sequences. If the input is fixed-length Tensor, please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for better performance.** DynamicRNN can process a minibatch of variable-length sequences. The length of each sample can be different and is recorded in LoD. In DynamicRNN, an input sequence will be unfolded into time steps and users can define how to process each time step in :code:`block()` . The total number of time steps is determined by the longest sequence. DynamicRNN will not pad all sequences to the same length, instead it will sort the sequences internally by the sequence length in descending order. The input sequences will be shrank because only sequences of which the length is larger than the time step will participate the remaining calculation. If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()` to obtain the result sequences. It is a LoDTensor gained by merging all time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`, the output LoDTensor will have the same LoD with x. The result of :code:`drnn()` includes RNN's outputs of all time steps, users can call :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step. Warning: Currently it is not supported to set :code:`is_sparse = True` of any layers defined within DynamicRNN's :code:`block` function. Args: name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Examples: .. code-block:: python import paddle.fluid as fluid sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1) encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1) decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32') drnn = fluid.layers.DynamicRNN() with drnn.block(): # Set sentence as RNN's input, each time step processes a word from the sentence current_word = drnn.step_input(sentence) # Set encode_proj as RNN's static input encoder_word = drnn.static_input(encoder_proj) # Initialize memory with boot_memory, which need reorder according to RNN's input sequences memory = drnn.memory(init=decoder_boot, need_reorder=True) fc_1 = fluid.layers.fc(input=encoder_word, size=30) fc_2 = fluid.layers.fc(input=current_word, size=30) decoder_inputs = fc_1 + fc_2 hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30) # Update memory with hidden drnn.update_memory(ex_mem=memory, new_mem=hidden) out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax') # Set hidden and out as RNN's outputs drnn.output(hidden, out) # Get RNN's result hidden, out = drnn() # Get RNN's result of the last time step last = fluid.layers.sequence_last_step(out) """ BEFORE_RNN = 0 IN_RNN = 1 AFTER_RNN = 2 def __init__(self, name=None): self.helper = LayerHelper('dynamic_rnn', name=name) self.status = DynamicRNN.BEFORE_RNN self.lod_rank_table = None self.max_seq_len = None self.step_idx = None self.zero_idx = None self.mem_dict = dict() self.output_array = [] self.outputs = [] self.cond = self.helper.create_variable_for_type_inference(dtype='bool') self.cond.stop_gradient = False self.while_op = While(self.cond) self.input_array = [] self.mem_link = [] def step_input(self, x, level=0): r""" This function is used to set sequence x as DynamicRNN's input. The maximum sequence length in x determines the number of time steps the RNN unit will be executed. DynamicRNN can take multiple inputs. When all inputs' :code:`lod_level` are 1, all inputs should hold the same LoD. When :code:`x.lod_level >= 2` , the input sequence will be unfold along specified level, and the slice of each time step is a LoDTensor whose lod_level is :code:`x.lod_level - level - 1` . In this case, the specified LoD level of multiple inputs should be the same. - Case 1: .. code-block:: text # input, where Si is slice data of shape [1, N] level = 0 x.lod = [[2, 1, 3]] x.shape = [6, N] x.data = [[S0], [S0], [S1], [S2], [S2], [S2]] # output # step 0, time step data of 3 sequences out.lod = [[]] out.shape = [3, N] out.data = [[S2], [S0], [S1]] # step 1, time step data of 2 sequences out.lod = [[]] out.shape = [2, N] out.data = [[S2], [S0]] # step 2, time step data of 1 sequences out.lod = [[]] out.shape = [1, N] out.data = [[S2]] Args: x (Variable): The input LoDTensor which holds information of a minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` . When RNN has multiple inputs, the first dimension should match across all inputs, but other shape components may differ. Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8. level (int, optional): The level of lod used to split steps. It should be in range :math:`[0, x.lod\_level)` . The default value is 0. Returns: Variable: The current time step in the input sequence. If there are :code:`num_sequences` \ sequences in x whose length is larger than :code:`step_idx` , the returned Variable \ will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \ The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \ a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \ be a variable-length LoDTensor. Raises: ValueError: When :code:`step_input()` is called outside :code:`block()` . TypeError: When x is not a Variable. Examples: .. code-block:: python import paddle.fluid as fluid sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1) embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True) drnn = fluid.layers.DynamicRNN() with drnn.block(): # Set embedding as RNN's input, each time step processes a word from the sentence word = drnn.step_input(embedding) # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200], # where batch_size is the number of sequences in embedding. memory = drnn.memory(shape=[200]) hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu') # Update memory to hidden drnn.update_memory(ex_mem=memory, new_mem=hidden) # Set hidden as RNN's output drnn.output(hidden) # Get RNN's result rnn_output = drnn() """ self._assert_in_rnn_block_("step_input") check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.step_input()') parent_block = self._parent_block_() if self.lod_rank_table is None: self.lod_rank_table = parent_block.create_var( name=unique_name.generate('lod_rank_table'), type=core.VarDesc.VarType.LOD_RANK_TABLE, ) self.lod_rank_table.stop_gradient = True parent_block.append_op( type='lod_rank_table', inputs={"X": x}, outputs={"Out": self.lod_rank_table}, attrs={"level": level}, ) self.max_seq_len = parent_block.create_var( name=unique_name.generate('dynamic_rnn_max_seq_len'), dtype='int64', ) self.max_seq_len.stop_gradient = False parent_block.append_op( type='max_sequence_len', inputs={'RankTable': self.lod_rank_table}, outputs={"Out": self.max_seq_len}, ) self.cond.stop_gradient = True parent_block.append_op( type='less_than', inputs={'X': self.step_idx, 'Y': self.max_seq_len}, outputs={'Out': self.cond}, attrs={'force_cpu': True}, ) input_array = parent_block.create_var( name=unique_name.generate('dynamic_rnn_input_array'), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=x.dtype, ) self.input_array.append((input_array, x.dtype)) parent_block.append_op( type='lod_tensor_to_array', inputs={'X': x, 'RankTable': self.lod_rank_table}, outputs={'Out': input_array}, ) return array_read(array=input_array, i=self.step_idx) def static_input(self, x): r""" This function is used to set x as DynamicRNN's static input. It is optional. - Case 1, set static input with LoD .. code-block:: text # RNN's input is the same as the case listed in step_input # static input, where Si is slice data of shape [1, M] x.lod = [[3, 1, 2]] x.shape = [6, M] x.data = [[S0], [S0], [S0], [S1], [S2], [S2]] # step 0, batch data corresponding to the 3 input sequences out.lod = [[2, 3, 1]] out.shape = [6, M] out.data = [[S2], [S2], [S0], [S0], [S0], [S1]] # step 1, batch data corresponding to the 2 input sequences out.lod = [[2, 3]] out.shape = [5, M] out.data = [[S2], [S2], [S0], [S0], [S0]] # step 2, batch data corresponding to the 1 input sequences out.lod = [[2]] out.shape = [2, M] out.data = [[S2], [S2]] - Case 2, set static input without LoD .. code-block:: text # RNN's input is the same as the case listed in step_input # static input, where Si is slice data of shape [1, M] x.lod = [[]] x.shape = [3, M] x.data = [[S0], [S1], [S2]] # step 0, batch data corresponding to the 3 input sequences out.lod = [[]] out.shape = [3, M] out.data = [[S2], [S0], [S1]] # step 1, batch data corresponding to the 2 input sequences out.lod = [[]] out.shape = [2, M] out.data = [[S2], [S0]] # step 2, batch data corresponding to the 1 input sequences out.lod = [[]] out.shape = [1, M] out.data = [[S2]] Args: x (Variable): The static input LoDTensor which should hold the same number of sequences as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None, the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1. Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8. Returns: Variable: The input LoDTensor after sorted and shrank. If there are :code:`num_sequences` \ sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \ the static input Tensor will be sorted to the same order as RNN's input and \ will only retain data corresponding to those :code:`num_sequences` sequences. \ The data type is the same as input. If :code:`x.lod == None` , the return value is \ a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \ be a variable-length LoDTensor. Raises: ValueError: When :code:`static_input()` is called outside :code:`block()` . TypeError: When x is not a Variable. RuntimeError: When :code:`static_input()` is called before :code:`step_input()` . Examples: .. code-block:: python import paddle.fluid as fluid sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1) encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1) decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32') drnn = fluid.layers.DynamicRNN() with drnn.block(): # Set sentence as RNN's input, each time step processes a word from the sentence current_word = drnn.step_input(sentence) # Set encode_proj as RNN's static input encoder_word = drnn.static_input(encoder_proj) # Initialize memory with boot_memory, which need reorder according to RNN's input sequences memory = drnn.memory(init=decoder_boot, need_reorder=True) fc_1 = fluid.layers.fc(input=encoder_word, size=30) fc_2 = fluid.layers.fc(input=current_word, size=30) decoder_inputs = fc_1 + fc_2 hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30) # Update memory with hidden drnn.update_memory(ex_mem=memory, new_mem=hidden) out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax') # Set out as RNN's output drnn.output(out) # Get RNN's result rnn_output = drnn() """ self._assert_in_rnn_block_("static_input") check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.static_input()') if self.lod_rank_table is None: raise RuntimeError( "static_input() must be called after step_input()." ) parent_block = self._parent_block_() x_reordered = parent_block.create_var( name=unique_name.generate("dynamic_rnn_static_input_reordered"), type=core.VarDesc.VarType.LOD_TENSOR, dtype=x.dtype, ) parent_block.append_op( type='reorder_lod_tensor_by_rank', inputs={'X': [x], 'RankTable': [self.lod_rank_table]}, outputs={'Out': [x_reordered]}, ) return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table) @signature_safe_contextmanager def block(self): """ The function is used to list the operations executed during each time step in RNN. The operation list will be executed :code:`max_sequence_len` times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences). Raises: ValueError: When :code:`block()` is called multi-times. """ if self.status != DynamicRNN.BEFORE_RNN: raise ValueError("rnn.block() can only be invoke once") self.step_idx = fill_constant( shape=[1], dtype='int64', value=0, force_cpu=True ) self.step_idx.stop_gradient = False self.status = DynamicRNN.IN_RNN with self.while_op.block(): yield increment(x=self.step_idx, value=1.0, in_place=True) for new_mem, mem_array in self.mem_link: array_write(x=new_mem, i=self.step_idx, array=mem_array) less_than( x=self.step_idx, y=self.max_seq_len, force_cpu=True, cond=self.cond, ) self.status = DynamicRNN.AFTER_RNN for each_array in self.output_array: self.outputs.append( array_to_lod_tensor(x=each_array, table=self.lod_rank_table) ) def __call__(self, *args, **kwargs): """ This function is used to get the output sequences of DynamicRNN. Args: None Returns: Variable or Variable list: RNN's output sequences. Raises: ValueError: When :code:`__call__()` is called before :code:`block()` . """ if self.status != DynamicRNN.AFTER_RNN: raise ValueError( ( "Output of the dynamic RNN can only be visited " "outside the rnn block." ) ) if len(self.outputs) == 1: return self.outputs[0] else: return self.outputs def memory( self, init=None, shape=None, value=0.0, need_reorder=False, dtype='float32', ): r""" Create a memory Variable for DynamicRNN to deliver data cross time steps. It can be initialized by an existing Tensor or a constant Tensor of given dtype and shape. Args: init (Variable, optional): LoDTensor used to initialize the memory. If init is not None, it should hold the same number of sequences as RNN's input (the input LoDTensor set by :code:`step_input()` ) and the memory will be initialized to it. If init's LoD is None, it will be treated as a minibatch with :code:`init.shape[0]` sequences of length 1. The default value is None. shape (list|tuple, optional): When init is None, it is used to specify the memory's shape. Note that the shape does not include the batch_size. If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is determined by RNN's input sequences. The default value is None. value (float, optional): When init is None, it is used as initialized value of memory. The default value is 0.0. need_reorder (bool, optional): When init is not None, it determines whether the memory needs to reorder like the RNN's input sequences. It should be set to True when the initialized memory depends on the order of input samples. The default value is False. dtype (str|numpy.dtype, optional): When init is None, it is used to set the data type of memory. The default value is "float32". Optional data types are: "float32", "float64", "int32", "int64". Returns: Variable: The memory LoDTensor after shrank. If there are :code:`num_sequences` \ sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \ the memory Tensor also need to be shrank and will only retain data \ corresponding to those :code:`num_sequences` sequences. Raises: ValueError: When :code:`memory()` is called outside :code:`block()` . TypeError: When init is set and is not a Variable. ValueError: When :code:`memory()` is called before :code:`step_input()` . Examples: .. code-block:: python import paddle.fluid as fluid sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1) boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32') drnn = fluid.layers.DynamicRNN() with drnn.block(): # Set sentence as RNN's input, each time step processes a word from the sentence word = drnn.step_input(sentence) # Initialize memory with boot_memory, which need reorder according to RNN's input sequences memory = drnn.memory(init=boot_memory, need_reorder=True) hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh') # Update memory with hidden drnn.update_memory(ex_mem=memory, new_mem=hidden) # Set hidden as RNN's output drnn.output(hidden) # Get RNN's result rnn_output = drnn() Examples: .. code-block:: python import paddle.fluid as fluid sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1) drnn = fluid.layers.DynamicRNN() with drnn.block(): # Set sentence as RNN's input, each time step processes a word from the sentence word = drnn.step_input(sentence) # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10], # where batch_size is the number of sequences in sentence. memory = drnn.memory(shape=[10], dtype='float32', value=0) hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh') # Update memory with hidden drnn.update_memory(ex_mem=memory, new_mem=hidden) # Set hidden as RNN's output drnn.output(hidden) # Get RNN's result rnn_output = drnn() """ self._assert_in_rnn_block_('memory') self._init_zero_idx_() if shape is not None: check_type( shape, 'shape', (list, tuple), 'fluid.layers.DynamicRNN.memory()', ) if init is not None: check_type( init, 'init', Variable, 'fluid.layers.DynamicRNN.memory()' ) parent_block = self._parent_block_() init_tensor = init if need_reorder == True: if self.lod_rank_table is None: raise ValueError( 'If set need_reorder to True, make sure step_input be ' 'invoked before ' 'memory(init=init, need_reordered=True, ...).' ) init_reordered = parent_block.create_var( name=unique_name.generate('dynamic_rnn_mem_init_reordered'), type=core.VarDesc.VarType.LOD_TENSOR, dtype=init.dtype, ) parent_block.append_op( type='reorder_lod_tensor_by_rank', inputs={ 'X': [init_tensor], 'RankTable': [self.lod_rank_table], }, outputs={'Out': [init_reordered]}, ) init_tensor = init_reordered mem_array = parent_block.create_var( name=unique_name.generate('dynamic_rnn_mem_array'), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=init.dtype, ) parent_block.append_op( type='write_to_array', inputs={'X': init_tensor, 'I': self.zero_idx}, outputs={'Out': mem_array}, ) retv = array_read(array=mem_array, i=self.step_idx) retv = shrink_memory( x=retv, i=self.step_idx, table=self.lod_rank_table ) self.mem_dict[retv.name] = mem_array return retv else: if len(self.input_array) == 0: raise ValueError( "step_input should be invoked before memory(shape=..., value=...)" ) parent_block = self._parent_block_() init = parent_block.create_var( name=unique_name.generate('mem_init'), dtype=dtype ) arr, dtype = self.input_array[0] in0 = parent_block.create_var( name=unique_name.generate('in0'), dtype=dtype ) parent_block.append_op( type='read_from_array', inputs={'X': [arr], 'I': [self.zero_idx]}, outputs={'Out': [in0]}, ) parent_block.append_op( type='fill_constant_batch_size_like', inputs={'Input': [in0]}, outputs={'Out': [init]}, attrs={ 'shape': [-1] + shape, 'value': float(value), 'dtype': init.dtype, }, ) return self.memory(init=init) def update_memory(self, ex_mem, new_mem): """ Update the memory which need to be delivered across time steps. Args: ex_mem (Variable): The memory data of previous time step. new_mem (Variable): The new memory data produced in current time step. The shape and data type of ex_mem and new_mem should be the same. Returns: None Raises: ValueError: When :code:`update_memory()` is called outside :code:`block()` . TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable. ValueError: When :code:`ex_mem` is defined by :code:`memory()` . ValueError: When :code:`update_memory()` is called before :code:`step_input()` . """ self._assert_in_rnn_block_('update_memory') check_type( ex_mem, 'ex_mem', Variable, 'fluid.layers.DynamicRNN.update_memory()', ) check_type( new_mem, 'new_mem', Variable, 'fluid.layers.DynamicRNN.update_memory()', ) mem_array = self.mem_dict.get(ex_mem.name, None) if mem_array is None: raise ValueError("Please invoke memory before update_memory") if self.lod_rank_table is None: raise ValueError("Please invoke step_input before update_memory") self.mem_link.append((new_mem, mem_array)) def output(self, *outputs): """ This function is used to set :code:`outputs` as RNN's output. Args: *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple Variables as its output. Returns: None Raises: ValueError: When :code:`output()` is called outside :code:`block()` . """ self._assert_in_rnn_block_('output') parent_block = self._parent_block_() for each in outputs: check_type( each, "outputs", Variable, "fluid.layers.DynamicRNN.output" ) outside_array = parent_block.create_var( name=unique_name.generate_with_ignorable_key( "_".join([self.helper.name, "output_array", each.name]) ), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=each.dtype, ) array_write(x=each, i=self.step_idx, array=outside_array) self.output_array.append(outside_array) def _init_zero_idx_(self): if self.zero_idx is None: parent_block = self._parent_block_() self.zero_idx = parent_block.create_var( name=unique_name.generate('zero_idx'), dtype='int64' ) parent_block.append_op( type='fill_constant', inputs={}, outputs={'Out': [self.zero_idx]}, attrs={ 'shape': [1], 'dtype': self.zero_idx.dtype, 'value': float(0), 'force_cpu': True, }, ) def _parent_block_(self): prog = self.helper.main_program parent_idx = prog.current_block().parent_idx assert parent_idx >= 0 parent_block = prog.block(parent_idx) return parent_block def _assert_in_rnn_block_(self, method): if self.status != DynamicRNN.IN_RNN: raise ValueError( "{0} can only be invoked inside rnn block.".format(method) ) def switch_case(branch_index, branch_fns, default=None, name=None): ''' :api_attr: Static Graph This operator is like a C++ switch/case statement. Args: branch_index(Tensor): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``. branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors. default(callable, optional): Callable that returns a structure of Tensors. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor|list(Tensor): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``, or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``, or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``. Raises: TypeError: If the type of ``branch_index`` is not Tensor. TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``. TypeError: If the type of ``branch_fns`` is not dict, list or tuple. TypeError: If the elements of ``branch_fns`` is not 2-tuple. TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer. ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique. TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable. TypeError: If ``default`` is not None but it is not callable. Examples: .. code-block:: python import paddle paddle.enable_static() def fn_1(): return paddle.full(shape=[1, 2], dtype='float32', fill_value=1) def fn_2(): return paddle.full(shape=[2, 2], dtype='int32', fill_value=2) def fn_3(): return paddle.full(shape=[3], dtype='int32', fill_value=3) main_program = paddle.static.default_startup_program() startup_program = paddle.static.default_main_program() with paddle.static.program_guard(main_program, startup_program): index_1 = paddle.full(shape=[1], dtype='int32', fill_value=1) index_2 = paddle.full(shape=[1], dtype='int32', fill_value=2) out_1 = paddle.static.nn.switch_case( branch_index=index_1, branch_fns={1: fn_1, 2: fn_2}, default=fn_3) out_2 = paddle.static.nn.switch_case( branch_index=index_2, branch_fns=[(1, fn_1), (2, fn_2)], default=fn_3) # Argument default is None and no index matches. fn_3 will be called because of the max index 7. out_3 = paddle.static.nn.switch_case( branch_index=index_2, branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)]) exe = paddle.static.Executor(paddle.CPUPlace()) res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3]) print(res_1) # [[1. 1.]] print(res_2) # [[2 2] [2 2]] print(res_3) # [3 3 3] ''' helper = LayerHelper('switch_case', **locals()) def _check_args(branch_index, branch_fns, default): check_variable_and_dtype( branch_index, 'branch_index', ['uint8', 'int32', 'int64'], 'switch_case', ) if convert_dtype(branch_index.dtype) != "int64": branch_index = cast(branch_index, "int64") check_type(branch_fns, 'branch_fns', (list, tuple, dict), 'switch_case') branch_fns = ( branch_fns.items() if isinstance(branch_fns, dict) else branch_fns ) branch_fns = ( list(enumerate(branch_fns)) if all(callable(fn) for fn in branch_fns) else branch_fns ) keys_of_fns = [] for index_fn_pair in branch_fns: if not isinstance(index_fn_pair, tuple): raise TypeError( _error_message( "The elements' type", "branch_fns", "switch_case", tuple, type(branch_fns), ) ) if len(index_fn_pair) != 2: raise TypeError( _error_message( "The tuple's size", "branch_fns", "switch_case", "2", str(len(index_fn_pair)) + "-tuple", ) ) key, fn = index_fn_pair if not isinstance(key, int): raise TypeError( _error_message( "The key's type", "branch_fns", "switch_case", int, type(key), ) ) if key in keys_of_fns: raise ValueError( "The key in 'branch_fns' must be unique, but '{}' appears more than once.".format( key ) ) else: keys_of_fns.append(key) if not callable(fn): raise TypeError( _error_message( "The type of function for key {}".format(key), "branch_fns", "switch_case", "callable", type(fn), ) ) if default is None: default = sorted(branch_fns)[-1][1] branch_fns = sorted(branch_fns)[:-1] elif not callable(default): raise TypeError("The default in Op(case) must be callable.") pred_fn_pairs = [] for index, fn in branch_fns: new_index = fill_constant(shape=[1], dtype="int64", value=index) pred = equal(branch_index, new_index) pred_fn_pairs.append((pred, fn)) return pred_fn_pairs, default pred_fn_pairs, default = _check_args(branch_index, branch_fns, default) false_fn = default for pred, true_fn in pred_fn_pairs: false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn) final_fn = false_fn return final_fn() @templatedoc() def reorder_lod_tensor_by_rank(x, rank_table): """ ${comment} Args: x(${x_type}): ${x_comment}. rank_table(${rank_table_type}): ${rank_table_comment}. Returns: out(${out_type}): ${out_comment}. Examples: .. code-block:: python import paddle.fluid as fluid data_desc = (['input', [9], 0], ['ref', [5], 1]) data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1]) rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1]) table = fluid.layers.control_flow.lod_rank_table(rank_data) new_data = fluid.layers.reorder_lod_tensor_by_rank( x=data, rank_table=table) """ check_type(x, 'x', (Variable), 'reorder_lod_tensor_by_rank') check_type( rank_table, 'rank_table', (Variable), 'reorder_lod_tensor_by_rank' ) if rank_table.type != core.VarDesc.VarType.LOD_RANK_TABLE: raise TypeError("The type of rank_table should be LOD_RANK_TABLE.") helper = LayerHelper('reorder_lod_tensor_by_rank', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='reorder_lod_tensor_by_rank', inputs={'X': [x], 'RankTable': [rank_table]}, outputs={'Out': [out]}, ) return out def is_empty(x, name=None): """ Test whether a Tensor is empty. Args: x (Tensor): The Tensor to be tested. name (str, optional): The default value is ``None`` . Normally users don't have to set this parameter. For more information, please refer to :ref:`api_guide_Name` . Returns: Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor. Examples: .. code-block:: python import paddle input = paddle.rand(shape=[4, 32, 32], dtype='float32') res = paddle.is_empty(x=input) print("res:", res) # ('res:', Tensor: eager_tmp_1 # - place: CPUPlace # - shape: [1] # - layout: NCHW # - dtype: bool # - data: [0]) """ if in_dygraph_mode(): return _C_ops.is_empty(x) if _in_legacy_dygraph(): return _legacy_C_ops.is_empty(x) check_variable_and_dtype( x, 'x', ['float32', 'float64', 'int32', 'int64'], 'is_empty' ) check_type(name, "name", (str, type(None)), "is_empty") helper = LayerHelper("is_empty", **locals()) cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True helper.append_op( type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]} ) return cond