# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle.fluid as fluid import paddle.fluid.core as core import paddle.fluid.dygraph as dygraph from paddle.distributed import init_parallel_env from paddle.nn import Linear class MLP(fluid.Layer): def __init__(self, param_attr=None, bias_attr=None): super().__init__() self._linear1 = Linear(784, 10) self._linear2 = Linear(10, 10) def forward(self, inputs): y = self._linear1(inputs) y = self._linear2(y) return y class TestDataParallelStateDict(unittest.TestCase): def test_data_parallel_state_dict(self): with fluid.dygraph.guard(): init_parallel_env() mlp = MLP() parallel_mlp = dygraph.parallel.DataParallel(mlp) single_state = mlp.state_dict() parallel_state = parallel_mlp.state_dict() base_para = {} place = ( fluid.CPUPlace() if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0) ) for k, v in single_state.items(): self.assertTrue(k in parallel_state) np.testing.assert_array_equal( v.numpy(), parallel_state[k].numpy() ) base_para[k] = v.numpy() for k, v in parallel_state.items(): np_t = v.numpy() var = v.value().get_tensor() var.set(np.zeros_like(np_t), place) self.assertTrue(np.sum(np.abs(v.numpy())) == 0) parallel_mlp.set_dict(base_para) parallel_state = parallel_mlp.state_dict() for k, v in parallel_state.items(): np.testing.assert_array_equal(v.numpy(), base_para[k]) parallel_mlp.load_dict(base_para) if __name__ == '__main__': unittest.main()