syntax = "proto2"; option optimize_for = LITE_RUNTIME; package paddle; message SGDConfig { // SGD // momentum: float >= 0. Parameter updates momentum. // decay: float >= 0. Learning rate decay over each update. // nesterov: boolean. Whether to apply Nesterov momentum. optional double momentum = 21 [default = 0.0]; optional double decay = 23 [default = 0.0]; optional bool nesterov =24 [default = false]; } message AdadeltaConfig { // Adadelta // It is recommended to leave it at the default value. // rho: float >= 0. // epsilon: float >= 0. Fuzz factor. // decay: float >= 0. Learning rate decay over each update. // reference : [Adadelta - an adaptive learning rate method](http://arxiv.org/abs/1212.5701) optional double rho = 33 [default = 0.90]; optional double epsilon = 31 [default = 1e-5]; optional double decay = 32 [default = 0.0]; } message AdagradConfig { // Adagrad // epsilon: float >= 0. // decay: float >= 0. Learning rate decay over each update. // reference : [Adaptive Subgradient Methods for Online Learning and Stochastic Optimization](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) optional double epsilon = 41 [default = 1e-5]; optional double decay = 42 [default = 0.0]; } message AdamConfig { // Adaj // beta_1: float, 0 < beta < 1. Generally close to 1. // beta_2: float, 0 < beta < 1. Generally close to 1. // epsilon: float >= 0. Fuzz factor. // decay: float >= 0. Learning rate decay over each update. // reference : [Adam - A Method for Stochastic Optimization](http://arxiv.org/abs/1412.6980v8) optional double beta_1 = 41; optional double beta_2 = 42; optional double epsilon = 43; optional double decay = 44; } message ConstLr { // learninRate Policy required double learning_rate = 1 [default = 1.0]; } message LinearLr { // learninRate Policy required double learning_rate = 1 [default = 1.0]; optional double lr_decay_a = 2; optional double lr_decay_b = 3; } message TensorProto { enum DataType { PADDLE_ELEMENT_TYPE_INT32 = 0; PADDLE_ELEMENT_TYPE_UINT32 = 1; PADDLE_ELEMENT_TYPE_INT64 = 2; PADDLE_ELEMENT_TYPE_UINT64 = 3; PADDLE_ELEMENT_TYPE_FLOAT32 = 4; PADDLE_ELEMENT_TYPE_FLOAT64 = 5; } required DataType data_type = 1; repeated bytes content = 2; } message SGDOptimizerState { // learning rate policy optional double learning_rate = 101; optional double lr_decay_a = 102; optional double lr_decay_b = 103; optional double num_sample_passed = 104; // state optional TensorProto parameter = 1; optional TensorProto momentums = 2; } message AdadeltaOptimizerState { // learning rate policy optional double learning_rate = 101; optional double lr_decay_a = 102; optional double lr_decay_b = 103; optional double num_sample_passed = 104; // state optional TensorProto parameter = 1; optional TensorProto accum_gradient = 2; optional TensorProto accum_delta = 3; optional TensorProto update_delta = 4; } message AdagradOptimizerState { // learning rate policy optional double learning_rate = 101; optional double lr_decay_a = 102; optional double lr_decay_b = 103; optional double num_sample_passed = 104; // state optional TensorProto parameter = 1; optional TensorProto accum_gradient = 2; } message AdamOptimizerState { // learning rate policy optional double learning_rate = 101; optional double lr_decay_a = 102; optional double lr_decay_b = 103; optional double num_sample_passed = 104; // state optional TensorProto parameter = 1; optional TensorProto momentums = 2; optional TensorProto velocitys = 3; } message OptimizerConfig { enum Optimizer { SGD = 1; Adadelta = 2; Adagrad = 3; Adam = 4; } required Optimizer optimizer = 1; optional SGDConfig sgd = 3; optional AdadeltaConfig adadelta = 4; optional AdagradConfig adagrad = 5; optional AdamConfig adam = 6; enum LrPolicy { ConstLr = 0; LinearLr = 1; } required LrPolicy lr_policy = 11; optional ConstLr const_lr = 12; optional LinearLr linear_lr = 13; // common config of optimizer // gradient clip when L2 exceeding value optional double clip_norm = 101; // gradient clip when L1 exceeding value optional double clip_value = 102; }