// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/one_hot_op.h" #include "paddle/fluid/platform/cuda_primitives.h" #include "paddle/fluid/platform/gpu_info.h" namespace paddle { namespace operators { using platform::PADDLE_CUDA_NUM_THREADS; template __global__ void FillOutputKernel(const InT* p_in_data, OutT* p_out_data, const int64_t numel, const int depth) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < numel && p_in_data[idx] >= 0 && p_in_data[idx] < depth) { *(p_out_data + (idx * depth) + p_in_data[idx]) = 1.0; } } template struct OneHotOpCUDAFunctor { const framework::LoDTensor* in_; framework::LoDTensor* out_; const DeviceContext& ctx_; int depth_; OneHotOpCUDAFunctor(const framework::LoDTensor* in, framework::LoDTensor* out, int depth, const DeviceContext& ctx) : in_(in), out_(out), depth_(depth), ctx_(ctx) {} template void apply() const { auto* p_in_data = in_->data(); auto numel = in_->numel(); auto* p_out_data = out_->mutable_data(ctx_.GetPlace()); auto stream = ctx_.stream(); math::set_constant(ctx_, out_, 0.0); FillOutputKernel<<<(numel + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS, PADDLE_CUDA_NUM_THREADS, 0, stream>>>( p_in_data, p_out_data, numel, depth_); } }; using LoDTensor = framework::LoDTensor; template class OneHotCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* in = context.Input("X"); auto* out = context.Output("Out"); int depth = -1; if (context.HasInput("depth_tensor")) { auto* depth_tensor = context.Input("depth_tensor"); if (platform::is_gpu_place(depth_tensor->place())) { framework::Tensor temp; TensorCopySync(*depth_tensor, platform::CPUPlace(), &temp); depth = *temp.data(); } else { depth = *depth_tensor->data(); } auto in_dims = in->dims(); framework::DDim out_dims(in_dims); out_dims[out_dims.size() - 1] = depth; out->Resize(out_dims); } else { depth = context.Attr("depth"); } framework::VisitDataType( static_cast( context.Attr("dtype")), OneHotOpCUDAFunctor( in, out, depth, context.template device_context())); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( one_hot, ops::OneHotCUDAKernel, ops::OneHotCUDAKernel);