/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" #include "paddle/operators/math/im2col.h" #include "paddle/operators/math/math_function.h" #include "paddle/operators/math/vol2col.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; // Base convolution operator definations for other conv // like operators to reuse the implementation. inline int OutputSize(int input_size, int filter_size, int dilation, int padding_up, int padding_down, int stride) { int output_size = (input_size + padding_up + padding_down - (dilation * (filter_size - 1) + 1)) / stride + 1; return output_size; } // Define Op classes in .h file so that other conv // operator implementations can reuse the code. class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker { public: Conv2DOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker); }; class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker { public: Conv3DOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker); }; class ConvOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override; }; class ConvOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override; }; template class GemmConvKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* input = context.Input("Input"); // The filter will be reshaped in the calculations, // so here use an assignment operation, // that avoids modifying the variable in the Scope. Tensor filter = *context.Input("Filter"); Tensor* output = context.Output("Output"); output->mutable_data(context.GetPlace()); std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); int groups = context.Attr("groups"); std::vector dilations = context.Attr>("dilations"); const int batch_size = static_cast(input->dims()[0]); // filter_shape_vec: {k_h, k_w} or {k_d, k_h, k_w} std::vector filter_shape_vec(framework::vectorize(filter.dims())); filter_shape_vec.erase(filter_shape_vec.begin(), filter_shape_vec.begin() + 2); // output_shape_vec: {o_h, o_w} or {o_d, o_h, o_w} std::vector output_shape_vec(framework::vectorize(output->dims())); output_shape_vec.erase(output_shape_vec.begin(), output_shape_vec.begin() + 2); // use col_shape in the im2col calculation // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d, // o_h, o_w} std::vector col_shape_vec; col_shape_vec.push_back(input->dims()[1] / groups); col_shape_vec.insert(col_shape_vec.end(), filter_shape_vec.begin(), filter_shape_vec.end()); col_shape_vec.insert(col_shape_vec.end(), output_shape_vec.begin(), output_shape_vec.end()); framework::DDim col_shape(framework::make_ddim(col_shape_vec)); // use col_matrix_shape in the gemm calculation // size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d * // o_h * o_w) framework::DDim col_matrix_shape = framework::flatten_to_2d(col_shape, filter_shape_vec.size() + 1); Tensor col; col.mutable_data(col_shape, context.GetPlace()); // col_matrix shares the same piece of data with col, // but will be reshaped into a two-dimensional matrix shape // to call the matrix multiplication interface. Tensor col_matrix; col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); framework::DDim input_shape = framework::slice_ddim( input->dims(), 1, static_cast(input->dims().size())); framework::DDim filter_matrix_shape = {filter.dims()[0], filter.numel() / filter.dims()[0]}; filter.Resize(filter_matrix_shape); framework::DDim output_matrix_shape = { output->dims()[1], output->numel() / (output->dims()[0] * output->dims()[1])}; // convolution operator: im2col(or vol2col) + gemm int in_step = static_cast(input->dims()[1]) / groups; int out_step = static_cast(output->dims()[1]) / groups; for (int i = 0; i < batch_size; i++) { Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape); for (int g = 0; g < groups; g++) { Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); if (filter_shape_vec.size() == 2) { // im2col math::Im2ColFunctor im2col; im2col(context.device_context(), in_slice, col, dilations[0], dilations[1], strides[0], strides[1], paddings[0], paddings[0], paddings[1], paddings[1]); } else if (filter_shape_vec.size() == 3) { // vol2col math::Vol2ColFunctor vol2col; vol2col(context.device_context(), in_slice, col, strides[0], strides[1], strides[2], paddings[0], paddings[1], paddings[2]); } // gemm Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); math::matmul(context.device_context(), filter_slice, false, col_matrix, false, T(1.0), &out_slice, T(0.0)); } } } }; template class GemmConvGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* input = context.Input("Input"); const Tensor* output_grad = context.Input(framework::GradVarName("Output")); Tensor* input_grad = context.Output(framework::GradVarName("Input")); Tensor* filter_grad = context.Output(framework::GradVarName("Filter")); // The filter and filter_grad will be reshaped in the calculations, // so here use an assignment operation, // that avoids modifying the variable in the Scope. Tensor filter = *context.Input("Filter"); if (!input_grad && !filter_grad) return; std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); int groups = context.Attr("groups"); std::vector dilations = context.Attr>("dilations"); const int batch_size = static_cast(input->dims()[0]); // filter_shape_vec: {k_h, k_w} or {k_d, k_h, k_w} std::vector filter_shape_vec(framework::vectorize(filter.dims())); filter_shape_vec.erase(filter_shape_vec.begin(), filter_shape_vec.begin() + 2); // output_shape_vec: {o_h, o_w} or {o_d, o_h, o_w} std::vector output_shape_vec( framework::vectorize(output_grad->dims())); output_shape_vec.erase(output_shape_vec.begin(), output_shape_vec.begin() + 2); // use col_shape in the im2col calculation // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d, // o_h, o_w} std::vector col_shape_vec; col_shape_vec.push_back(input->dims()[1] / groups); col_shape_vec.insert(col_shape_vec.end(), filter_shape_vec.begin(), filter_shape_vec.end()); col_shape_vec.insert(col_shape_vec.end(), output_shape_vec.begin(), output_shape_vec.end()); framework::DDim col_shape(framework::make_ddim(col_shape_vec)); // use col_matrix_shape in the gemm calculation // size: (i_c/g * k_h * k_w, o_h * o_w) // or // (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w) framework::DDim col_matrix_shape = framework::flatten_to_2d(col_shape, filter_shape_vec.size() + 1); framework::DDim input_shape = framework::slice_ddim( input->dims(), 1, static_cast(input->dims().size())); framework::DDim filter_matrix_shape = {filter.dims()[0], filter.numel() / filter.dims()[0]}; filter.Resize(filter_matrix_shape); framework::DDim output_matrix_shape = { output_grad->dims()[1], output_grad->numel() / (output_grad->dims()[0] * output_grad->dims()[1])}; // convolution backward input operator: gemm + col2im(or col2vol) // convolution backward weight operator: im2col(or vol2col) + gemm int in_step = static_cast(input->dims()[1]) / groups; int out_step = static_cast(output_grad->dims()[1]) / groups; Tensor col; // col_matrix shares the same piece of data with col, // but will be reshaped into a two-dimensional matrix shape // to call the matrix multiplication interface. Tensor col_matrix; col.mutable_data(col_shape, context.GetPlace()); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); math::SetConstant set_zero; if (input_grad) { input_grad->mutable_data(context.GetPlace()); set_zero(context.device_context(), input_grad, static_cast(0)); for (int i = 0; i < batch_size; i++) { Tensor out_grad_batch = output_grad->Slice(i, i + 1).Resize(output_matrix_shape); Tensor in_grad_batch = input_grad->Slice(i, i + 1).Resize(input_shape); for (int g = 0; g < groups; g++) { // gemm Tensor out_grad_slice = out_grad_batch.Slice(g * out_step, (g + 1) * out_step); Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); math::matmul(context.device_context(), filter_slice, true, out_grad_slice, false, T(1.0), &col_matrix, T(0.0)); // col2im Tensor in_grad_slice = in_grad_batch.Slice(g * in_step, (g + 1) * in_step); if (filter_shape_vec.size() == 2) { math::Col2ImFunctor col2im; col2im(context.device_context(), in_grad_slice, col, dilations[0], dilations[1], strides[0], strides[1], paddings[0], paddings[0], paddings[1], paddings[1]); } else if (filter_shape_vec.size() == 3) { math::Col2VolFunctor col2vol; col2vol(context.device_context(), in_grad_slice, col, strides[0], strides[1], strides[2], paddings[0], paddings[1], paddings[2]); } } } } if (filter_grad) { filter_grad->mutable_data(context.GetPlace()); Tensor filter_grad_ = *filter_grad; filter_grad_.Resize(filter_matrix_shape); set_zero(context.device_context(), filter_grad, static_cast(0)); for (int i = 0; i < batch_size; i++) { Tensor out_grad_batch = output_grad->Slice(i, i + 1).Resize(output_matrix_shape); Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); for (int g = 0; g < groups; g++) { // im2col Tensor out_grad_slice = out_grad_batch.Slice(g * out_step, (g + 1) * out_step); Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); if (filter_shape_vec.size() == 2) { math::Im2ColFunctor im2col; im2col(context.device_context(), in_slice, col, dilations[0], dilations[1], strides[0], strides[1], paddings[0], paddings[0], paddings[1], paddings[1]); } else if (filter_shape_vec.size() == 3) { math::Vol2ColFunctor vol2col; vol2col(context.device_context(), in_slice, col, strides[0], strides[1], strides[2], paddings[0], paddings[1], paddings[2]); } // gemm Tensor filter_grad_slice = filter_grad_.Slice(g * out_step, (g + 1) * out_step); math::matmul(context.device_context(), out_grad_slice, false, col_matrix, true, T(1.0), &filter_grad_slice, T(1.0)); } } } } }; } // namespace operators } // namespace paddle