// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "paddle/fluid/operators/py_layer_op.h" namespace paddle { namespace operators { namespace py = ::pybind11; void RunPyObject(py::object *py_object, const std::vector &ins, std::vector *outs) { py::gil_scoped_acquire guard; auto py_function = py_object->attr("backward"); py::tuple inputs(ins.size()); for (size_t i = 0; i < ins.size(); i++) { auto in_var = ins[i]; if (in_var != nullptr) { auto name = paddle::string::Sprintf("generator_custom_py_layer_%d@GRAD", static_cast(i)); std::shared_ptr temp_wrap = std::make_shared(name, *in_var); temp_wrap->InnerSetOverridedStopGradient(true); std::shared_ptr temp_varbase = std::make_shared(temp_wrap); try { inputs[i] = py::cast(temp_varbase).ptr(); } catch (py::cast_error &) { PADDLE_THROW(platform::errors::Unimplemented( "The output of `PyLayer.backward` should be `Tensor`.")); } } } auto py_result = py_function(*py_object, *inputs); if (PyTuple_Check(py_result.ptr()) || PyList_Check(py_result.ptr())) { auto result_tuple = py_result.cast(); if (result_tuple.size() != outs->size()) { PADDLE_THROW(platform::errors::InvalidArgument( "The number of outputs of `PyLayer.backward` should be %d, but " "received %d.", outs->size(), result_tuple.size())); } for (size_t i = 0; i < result_tuple.size(); i++) { if ((*outs)[i] != nullptr) { if (Py_None != result_tuple[i].ptr()) { try { auto result_var = result_tuple[i].cast>(); *(*outs)[i] = result_var->Var(); } catch (py::cast_error &) { PADDLE_THROW(platform::errors::InvalidArgument( "The output of `PyLayer.backward` should be `Tensor`.")); } } else { PADDLE_THROW(platform::errors::InvalidArgument( "The %dth input tensor of forward needs gradient and the " "corresponding gradient cannot be None.", i)); } } else { if (Py_None != result_tuple[i].ptr()) { PADDLE_THROW(platform::errors::InvalidArgument( "The %dth input tensor of forward do not need gradient and the " "corresponding gradient should be `None`.", i)); } } } } else { if (1 != outs->size()) { PADDLE_THROW(platform::errors::InvalidArgument( "The number of outputs of `PyLayer.backward` should be %d, but " "received 1.", outs->size())); } if ((*outs)[0] != nullptr) { if (Py_None != py_result.ptr()) { try { auto result_var = py_result.cast>(); *((*outs)[0]) = result_var->Var(); } catch (py::cast_error &) { PADDLE_THROW(platform::errors::InvalidArgument( "The output of `PyLayer.backward` should be `Tensor`.")); } } else { PADDLE_THROW(platform::errors::InvalidArgument( "The input tensor of forward needs gradient, so the output of " "`PyLayer.backward` can not be `None`.")); } } else { PADDLE_THROW(platform::errors::InvalidArgument( "The input tensor of forward do not need gradient, so the output of " "`PyLayer.backward` should be `None`.")); } } } void PyLayerGradOpMaker::Apply( GradOpPtr grad_op) const { grad_op->SetType("py_layer"); auto &inner_op = grad_op->InnerOp(); auto py_layer_op_const = dynamic_cast(&inner_op); if (py_layer_op_const) { auto py_layer_op = const_cast(py_layer_op_const); py_layer_op->SetPyLayerContext(py_context_); } else { PADDLE_THROW(platform::errors::Fatal( "PyLayerGradOpMaker can't cast %s to PyLayerOp*.", typeid(&inner_op).name())); } auto fwd_out_grads = this->OutputGrad("Out"); using return_type = decltype(fwd_out_grads); return_type bwd_ins; bwd_ins.insert(bwd_ins.begin(), fwd_out_grads.begin(), fwd_out_grads.end()); auto bwd_outs = this->InputGrad("X", false); grad_op->SetInput("X", bwd_ins); grad_op->SetOutput("Out", bwd_outs); } class PyLayerOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "Inputs of PyLayer op.").AsDuplicable(); AddOutput("Out", "Outputs of PyLayer op").AsDuplicable(); AddComment(R"DOC("PyLayer Op")DOC"); } }; template class PyLayerOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { auto &op_ = ctx.GetOp(); auto pylayer_op = dynamic_cast(&op_); if (pylayer_op) { auto py_layer_context = pylayer_op->GetPyLayerContext(); py::object bk_ctx(py::handle(py_layer_context->GetMutableCtx()), true); auto &input_vars = ctx.MultiInputVar("X"); auto output_vars = ctx.MultiOutputVar("Out"); RunPyObject(&bk_ctx, input_vars, &output_vars); } else { PADDLE_THROW(platform::errors::Fatal( "PyLayerOpKernel can't cast %s to PyLayer*.", typeid(&op_).name())); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(py_layer, ops::PyLayerOp, ops::PyLayerOpMaker, ops::PyLayerGradOpMaker, ops::PyLayerGradOpMaker); REGISTER_OP_CPU_KERNEL( py_layer, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel); #ifdef PADDLE_WITH_CUDA REGISTER_OP_CUDA_KERNEL( py_layer, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel, ops::PyLayerOpKernel); #endif // PADDLE_WITH_CUDA