/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/funcs/selected_rows_functor.h" #include "paddle/fluid/framework/mixed_vector.h" #include "paddle/fluid/platform/device/device_wrapper.h" #ifdef PADDLE_WITH_MKLDNN #include "paddle/fluid/operators/mkldnn/axpy_handler.h" #endif namespace phi { namespace funcs { template struct SelectedRowsAdd { void operator()(const phi::CPUContext& context, const phi::SelectedRows& input1, const phi::SelectedRows& input2, phi::SelectedRows* output) { auto in1_height = input1.height(); PADDLE_ENFORCE_EQ( in1_height, input2.height(), phi::errors::InvalidArgument("The two inputs height must be equal." "But received first input height = " "[%d], second input height = [%d]", in1_height, input2.height())); output->set_height(in1_height); auto& in1_rows = input1.rows(); auto& in2_rows = input2.rows(); std::vector out_rows; out_rows.reserve(in1_rows.size() + in2_rows.size()); // concat rows out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end()); out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end()); output->set_rows(out_rows); auto* out_value = output->mutable_value(); auto& in1_value = input1.value(); auto& in2_value = input2.value(); auto in1_row_numel = in1_value.numel() / in1_rows.size(); PADDLE_ENFORCE_EQ( in1_row_numel, in2_value.numel() / in2_rows.size(), phi::errors::InvalidArgument( "The two inputs width must be equal." "But received first input width = [%d], second input width = [%d]", in1_row_numel, in2_value.numel() / in2_rows.size())); PADDLE_ENFORCE_EQ( in1_row_numel, out_value->numel() / out_rows.size(), phi::errors::InvalidArgument( "The input and oupput width must be equal." "But received input width = [%d], output width = [%d]", in1_row_numel, out_value->numel() / out_rows.size())); auto in1_place = input1.place(); PADDLE_ENFORCE_EQ(paddle::platform::is_cpu_place(in1_place), true, phi::errors::InvalidArgument( "The running environment is not on the CPU place.")); auto in2_place = input2.place(); PADDLE_ENFORCE_EQ(paddle::platform::is_cpu_place(in2_place), true, phi::errors::InvalidArgument( "The running environment is not on the CPU place.")); auto out_place = context.GetPlace(); PADDLE_ENFORCE_EQ(paddle::platform::is_cpu_place(out_place), true, phi::errors::InvalidArgument( "The running environment is not on the CPU place.")); auto* out_data = out_value->data(); auto* in1_data = in1_value.data(); paddle::memory::Copy(out_place, out_data, in1_place, in1_data, in1_value.numel() * sizeof(T)); auto* in2_data = in2_value.data(); paddle::memory::Copy(out_place, out_data + in1_value.numel(), in2_place, in2_data, in2_value.numel() * sizeof(T)); } }; template struct SelectedRowsAdd; template struct SelectedRowsAdd; template struct SelectedRowsAddTensor { void operator()(const phi::CPUContext& context, const phi::SelectedRows& input1, const phi::DenseTensor& input2, phi::DenseTensor* output) { auto in1_height = input1.height(); const auto& in2_dims = input2.dims(); const auto& out_dims = output->dims(); PADDLE_ENFORCE_EQ( in1_height, in2_dims[0], phi::errors::InvalidArgument("The two inputs height must be equal." "But received first input height = " "[%d], second input height = [%d]", in1_height, in2_dims[0])); PADDLE_ENFORCE_EQ( in1_height, out_dims[0], phi::errors::InvalidArgument( "The input and output height must be equal." "But received input height = [%d], output height = [%d]", in1_height, out_dims[0])); auto& in1_value = input1.value(); auto& in1_rows = input1.rows(); int64_t in1_row_numel = in1_value.numel() / in1_rows.size(); PADDLE_ENFORCE_EQ( in1_row_numel, input2.numel() / in1_height, phi::errors::InvalidArgument( "The two inputs width must be equal." "But received first input width = [%d], second input width = [%d]", in1_row_numel, input2.numel() / in1_height)); PADDLE_ENFORCE_EQ( in1_row_numel, output->numel() / in1_height, phi::errors::InvalidArgument( "The input and output width must be equal." "But received input width = [%d], output width = [%d]", in1_row_numel, output->numel() / in1_height)); phi::funcs::SetConstant functor; functor(context, output, 0.0); auto* in1_data = in1_value.data(); auto* out_data = output->data(); for (size_t i = 0; i < in1_rows.size(); i++) { for (int64_t j = 0; j < in1_row_numel; j++) { out_data[in1_rows[i] * in1_row_numel + j] += in1_data[i * in1_row_numel + j]; } } auto out_eigen = EigenVector::Flatten(*output); auto in2_eigen = EigenVector::Flatten(input2); out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen; } }; template struct SelectedRowsAddTensor; template struct SelectedRowsAddTensor; template struct SelectedRowsAddTo { void operator()(const phi::CPUContext& context, const phi::SelectedRows& input1, const int64_t input2_offset, phi::SelectedRows* input2) { auto in1_height = input1.height(); PADDLE_ENFORCE_EQ( in1_height, input2->height(), phi::errors::InvalidArgument("The two inputs height must be equal." "But received first input height = " "[%d], second input height = [%d]", in1_height, input2->height())); auto& in1_rows = input1.rows(); auto& in2_rows = *(input2->mutable_rows()); auto& in1_value = input1.value(); auto* in2_value = input2->mutable_value(); // concat rows paddle::framework::MixVector mixv_in2_rows(&in2_rows); mixv_in2_rows.Extend(in1_rows.begin(), in1_rows.end()); auto in1_place = input1.place(); PADDLE_ENFORCE_EQ(paddle::platform::is_cpu_place(in1_place), true, phi::errors::InvalidArgument( "The running environment is not on the CPU place.")); auto in2_place = input2->place(); PADDLE_ENFORCE_EQ(paddle::platform::is_cpu_place(in2_place), true, phi::errors::InvalidArgument( "The running environment is not on the CPU place.")); auto* in1_data = in1_value.data(); auto* in2_data = in2_value->data(); paddle::memory::Copy(in2_place, in2_data + input2_offset, in1_place, in1_data, in1_value.numel() * sizeof(T)); } }; template struct SelectedRowsAddTo; template struct SelectedRowsAddTo; template struct SelectedRowsAddTo; template struct SelectedRowsAddTo; template struct SelectedRowsSumTo { void operator()(const phi::CPUContext& context, const std::vector& input1, const std::vector& input2_offsets, phi::SelectedRows* input2) { // Ensure all selected rows have the same height size_t size = 0u; for (auto iter = input1.begin(); iter != input1.end(); ++iter) { auto& in_rows = (*iter)->rows(); size += in_rows.end() - in_rows.begin(); auto in1_height = (*iter)->height(); PADDLE_ENFORCE_EQ(in1_height, input2->height(), phi::errors::InvalidArgument( "The two inputs height must be equal." "But received first input height = [%d], second " "input height = [%d]", in1_height, input2->height())); } // concat rows std::vector in2_rows; in2_rows.reserve(in2_rows.size() + size); for (auto iter = input1.begin(); iter != input1.end(); ++iter) { const paddle::framework::Vector& in_rows = (*iter)->rows(); in2_rows.insert(in2_rows.end(), in_rows.begin(), in_rows.end()); } input2->set_rows(in2_rows); auto* in2_value = input2->mutable_value(); auto* in2_data = in2_value->data(); auto blas = phi::funcs::GetBlas(context); size_t offset = 0u; for (size_t i = 0u; i != input1.size(); ++i) { auto& in_value = input1[i]->value(); const auto* in_data = in_value.data(); offset += input2_offsets[i]; blas.VCOPY(in_value.numel(), in_data, in2_data + offset); } } }; template struct SelectedRowsSumTo; template struct SelectedRowsSumTo; template struct SelectedRowsAddToTensor { void operator()(const phi::CPUContext& context, const phi::SelectedRows& input1, phi::DenseTensor* input2) { if (UNLIKELY(input1.rows().size() == 0)) { LOG(WARNING) << "input selected rows is empty!"; return; } auto in1_height = input1.height(); const auto& in2_dims = input2->dims(); PADDLE_ENFORCE_EQ( in1_height, in2_dims[0], phi::errors::InvalidArgument("The two inputs height must be equal." "But received first input height = " "[%d], second input height = [%d]", in1_height, in2_dims[0])); auto& in1_value = input1.value(); auto& in1_rows = input1.rows(); int64_t in1_row_numel = in1_value.numel() / in1_rows.size(); PADDLE_ENFORCE_EQ( in1_row_numel, input2->numel() / in1_height, phi::errors::InvalidArgument( "The two inputs width must be equal." "But received first input width = [%d], second input width = [%d]", in1_row_numel, input2->numel() / in1_height)); auto* in1_data = in1_value.data(); auto* input2_data = input2->data(); for (size_t i = 0; i < in1_rows.size(); i++) { for (int64_t j = 0; j < in1_row_numel; j++) { input2_data[in1_rows[i] * in1_row_numel + j] += in1_data[i * in1_row_numel + j]; } } } }; template struct SelectedRowsAddToTensor; template struct SelectedRowsAddToTensor; template struct SelectedRowsAddToTensor; template struct SelectedRowsAddToTensor; template struct SelectedRowsAddToTensor; // This is a separated namespace for manipulate SelectedRows typed // data. Like merge duplicated rows, adding two SelectedRows etc. // // Another group of functors is called "scatter updates", which means // use SelectedRows to update a dense tensor with different Ops, like // add or mul. namespace scatter { template typename std::enable_if::value>::type elementwise_add_to( phi::funcs::BlasT* blas, size_t data_len, const T* in, T* out) { blas->AXPY(data_len, T(1.f), in, out); } template typename std::enable_if::value>::type elementwise_add_to( phi::funcs::BlasT* blas, size_t data_len, const T* in, T* out) { for (size_t i = 0; i < data_len; i++) { out[i] += in[i]; } } template typename std::enable_if::value>::type add_sparse_inputs(const std::vector& inputs, const std::unordered_map& rows_to_id, int64_t input_width, const DeviceContext& context, T* out_data) { #ifndef PADDLE_WITH_MKLDNN auto blas = phi::funcs::GetBlas(context); #endif for (auto* input : inputs) { if (input->rows().size() == 0) { continue; } auto* input_data = input->value().data(); auto& input_rows = input->rows(); #ifdef PADDLE_WITH_MKLDNN paddle::operators::OneDNNAXPYHandler axpy_handler(input_width, T(1.f)); for (size_t i = 0; i < input_rows.size(); i++) { size_t out_i = rows_to_id.at(input_rows[i]); axpy_handler(&input_data[i * input_width], &out_data[out_i * input_width]); } #else for (size_t i = 0; i < input_rows.size(); i++) { size_t out_i = rows_to_id.at(input_rows[i]); elementwise_add_to(&blas, static_cast(input_width), &input_data[i * input_width], &out_data[out_i * input_width]); } #endif } } template typename std::enable_if::value>::type add_sparse_inputs(const std::vector& inputs, const std::unordered_map& rows_to_id, int64_t input_width, const DeviceContext& context, T* out_data) { VLOG(4) << "[CPU] add_sparse_inputs <" << typeid(T).name(); auto blas = phi::funcs::GetBlas(context); for (auto* input : inputs) { if (input->rows().size() == 0) { continue; } auto* input_data = input->value().data(); auto& input_rows = input->rows(); for (size_t i = 0; i < input_rows.size(); i++) { size_t out_i = rows_to_id.at(input_rows[i]); elementwise_add_to(&blas, static_cast(input_width), &input_data[i * input_width], &out_data[out_i * input_width]); } } } template struct MergeAddImpl { phi::SelectedRows operator()(const DeviceContext& context, const phi::SelectedRows& input, const bool sorted_result = false) { phi::SelectedRows out; (*this)(context, input, &out, sorted_result); return out; } void operator()(const DeviceContext& context, const phi::SelectedRows& input, phi::SelectedRows* output, const bool sorted_result = false) { std::vector inputs; inputs.push_back(&input); (*this)(context, inputs, output, sorted_result); } void operator()(const DeviceContext& context, const std::vector& inputs, phi::SelectedRows* output, const bool sorted_result = false) { if (inputs.size() == 0) { VLOG(3) << "no input! return"; return; } const phi::SelectedRows* has_value_input = nullptr; for (auto* in : inputs) { if (in->rows().size() > 0) { has_value_input = in; break; } } if (has_value_input == nullptr) { VLOG(3) << "no input has value! just return" << std::endl; return; } auto input_width = has_value_input->value().dims()[1]; auto input_height = has_value_input->height(); phi::SelectedRows& out = *output; std::set merged_row_set; size_t row_num = 0; for (auto* input : inputs) { if (input->rows().size() == 0) { continue; } PADDLE_ENFORCE_EQ( input_width, input->value().dims()[1], phi::errors::InvalidArgument("All inputs should have same " "dimension except for the first one.")); PADDLE_ENFORCE_EQ( input_height, input->height(), phi::errors::InvalidArgument("All inputs should have same height.")); row_num += input->rows().size(); merged_row_set.insert(input->rows().begin(), input->rows().end()); } out.set_height(input_height); out.mutable_value()->mutable_data( phi::make_ddim( {static_cast(merged_row_set.size()), input_width}), context.GetPlace()); auto* out_data = out.mutable_value()->data(); if (merged_row_set.size() == row_num && !sorted_result) { // no duplicated ids, just concat the result together std::vector merge_rows; merge_rows.reserve(row_num); // concat rows for (auto* in : inputs) { merge_rows.insert( merge_rows.end(), in->rows().begin(), in->rows().end()); } out.set_rows(merge_rows); auto in_place = inputs[0]->place(); auto out_place = out.place(); int64_t copied_numel = 0; for (auto* in : inputs) { auto* in_data = in->value().data(); auto in_numel = in->rows().size() * input_width; paddle::memory::Copy(out_place, out_data + copied_numel, in_place, in_data, in_numel * sizeof(T)); copied_numel += in_numel; } } else { std::vector merge_rows(merged_row_set.begin(), merged_row_set.end()); if (sorted_result) { std::sort(merge_rows.begin(), merge_rows.end()); } out.set_rows(merge_rows); phi::funcs::SetConstant constant_functor; constant_functor(context, out.mutable_value(), static_cast(0.f)); std::unordered_map rows_to_id; for (size_t i = 0; i < merge_rows.size(); ++i) { rows_to_id[merge_rows[i]] = i; } add_sparse_inputs( inputs, rows_to_id, input_width, context, out_data); } } }; template struct MergeAdd { // unary functor, merge by adding duplicated rows in // the input SelectedRows object. phi::SelectedRows operator()(const phi::CPUContext& context, const phi::SelectedRows& input, const bool sorted_result) { return MergeAddImpl()(context, input, sorted_result); } void operator()(const phi::CPUContext& context, const phi::SelectedRows& input, phi::SelectedRows* output, const bool sorted_result) { MergeAddImpl()(context, input, output, sorted_result); } void operator()(const phi::CPUContext& context, const std::vector& inputs, phi::SelectedRows* output, const bool sorted_result) { MergeAddImpl()(context, inputs, output, sorted_result); } }; #define TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(dtype) \ template struct MergeAddImpl; \ template struct MergeAdd; TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(float) TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(double) TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(int) TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(int64_t) TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(phi::dtype::bfloat16) TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(phi::dtype::complex) TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(phi::dtype::complex) #ifdef PADDLE_WITH_XPU template struct MergeAdd { phi::SelectedRows operator()(const phi::XPUContext& context, const phi::SelectedRows& input, const bool sorted_result = false) { phi::SelectedRows out; (*this)(context, input, &out, sorted_result); return out; } void operator()(const phi::XPUContext& context, const phi::SelectedRows& input, phi::SelectedRows* output, const bool sorted_result = false) { paddle::framework::Vector input_rows(input.rows()); if (input_rows.size() == 0) { return; } phi::SelectedRows& out = *output; std::set row_set(input_rows.begin(), input_rows.end()); std::vector merge_rows(row_set.begin(), row_set.end()); auto input_width = input.value().dims()[1]; out.set_rows(merge_rows); out.set_height(input.height()); out.mutable_value()->mutable_data( phi::make_ddim({static_cast(merge_rows.size()), input_width}), context.GetPlace()); std::unordered_map rows_to_id; for (size_t i = 0; i < merge_rows.size(); ++i) { rows_to_id[merge_rows[i]] = i; } auto* y_data = out.mutable_value()->data(); auto* x_data = input.value().data(); int xm = input_rows.size(); int ym = merge_rows.size(); int n = input_width; xpu::ctx_guard RAII_GUARD(context.x_context()); int64_t* x_rows_data = RAII_GUARD.alloc_l3_or_gm(xm); int64_t* y_rows_data = RAII_GUARD.alloc_l3_or_gm(ym); paddle::memory::Copy(context.GetPlace(), y_rows_data, phi::CPUPlace(), merge_rows.data(), ym * sizeof(int64_t)); paddle::memory::Copy(context.GetPlace(), x_rows_data, phi::CPUPlace(), input_rows.data(), xm * sizeof(int64_t)); int r = xpu::merge_dup_rows(context.x_context(), x_data, y_data, x_rows_data, y_rows_data, xm, n, ym); PADDLE_ENFORCE_XDNN_SUCCESS(r, "merge_dup_rows"); } void operator()(const phi::XPUContext& context, const std::vector& inputs, phi::SelectedRows* output, const bool sorted_result = false) { if (inputs.size() == 0) { VLOG(3) << "no input! return"; return; } const phi::SelectedRows* has_value_input = nullptr; for (auto* in : inputs) { if (in->rows().size() > 0) { has_value_input = in; break; } } if (has_value_input == nullptr) { VLOG(3) << "no input has value! just return" << std::endl; return; } auto input_width = has_value_input->value().dims()[1]; auto input_height = has_value_input->height(); phi::SelectedRows& out = *output; std::set merged_row_set; size_t row_num = 0; for (auto* input : inputs) { if (input->rows().size() == 0) { continue; } PADDLE_ENFORCE_EQ( input_width, input->value().dims()[1], phi::errors::InvalidArgument("All inputs should have same " "dimension except for the first one.")); PADDLE_ENFORCE_EQ( input_height, input->height(), phi::errors::InvalidArgument("All inputs should have same height.")); row_num += input->rows().size(); merged_row_set.insert(input->rows().begin(), input->rows().end()); } std::vector merge_rows(merged_row_set.begin(), merged_row_set.end()); if (sorted_result) { std::sort(merge_rows.begin(), merge_rows.end()); } out.set_rows(merge_rows); out.set_height(input_height); out.mutable_value()->mutable_data( phi::make_ddim( {static_cast(merged_row_set.size()), input_width}), context.GetPlace()); float* y_data = reinterpret_cast(out.mutable_value()->data()); std::unordered_map rows_to_id; for (size_t i = 0; i < merge_rows.size(); ++i) { rows_to_id[merge_rows[i]] = i; } for (auto* input : inputs) { if (input->rows().size() == 0) { continue; } auto& input_rows = input->rows(); auto* x_data = input->value().data(); int xm = input_rows.size(); int ym = merge_rows.size(); int n = input_width; xpu::ctx_guard RAII_GUARD(context.x_context()); int64_t* x_rows_data = RAII_GUARD.alloc_l3_or_gm(xm); int64_t* y_rows_data = RAII_GUARD.alloc_l3_or_gm(ym); paddle::memory::Copy(context.GetPlace(), y_rows_data, phi::CPUPlace(), merge_rows.data(), ym * sizeof(int64_t)); paddle::memory::Copy(context.GetPlace(), x_rows_data, phi::CPUPlace(), input_rows.data(), xm * sizeof(int64_t)); int r = xpu::merge_dup_rows(context.x_context(), x_data, y_data, x_rows_data, y_rows_data, xm, n, ym); PADDLE_ENFORCE_XDNN_SUCCESS(r, "merge_dup_rows"); } } }; #endif template struct MergeAverage { phi::SelectedRows operator()(const phi::CPUContext& context, const phi::SelectedRows& input) { phi::SelectedRows out; (*this)(context, input, &out); return out; } void operator()(const phi::CPUContext& context, const phi::SelectedRows& input, phi::SelectedRows* output) { std::vector inputs; inputs.push_back(&input); (*this)(context, inputs, output); } void operator()(const phi::CPUContext& context, const std::vector& inputs, phi::SelectedRows* output) { if (inputs.size() == 0) { VLOG(3) << "no input! return"; return; } const phi::SelectedRows* has_value_input = nullptr; for (auto* in : inputs) { if (in->rows().size() > 0) { has_value_input = in; break; } } if (has_value_input == nullptr) { VLOG(3) << "no input has value! just return" << std::endl; return; } auto input_width = has_value_input->value().dims()[1]; auto input_height = has_value_input->height(); phi::SelectedRows& out = *output; std::set merged_row_set; size_t row_num = 0; for (auto* input : inputs) { if (input->rows().size() == 0) { continue; } PADDLE_ENFORCE_EQ( input_width, input->value().dims()[1], phi::errors::InvalidArgument("All inputs should have same " "dimension except for the first one.")); PADDLE_ENFORCE_EQ( input_height, input->height(), phi::errors::InvalidArgument("All input should have same height.")); row_num += input->rows().size(); merged_row_set.insert(input->rows().begin(), input->rows().end()); } out.set_height(input_height); out.mutable_value()->mutable_data( phi::make_ddim( {static_cast(merged_row_set.size()), input_width}), context.GetPlace()); auto* out_data = out.mutable_value()->data(); std::vector merge_rows(merged_row_set.begin(), merged_row_set.end()); std::sort(merge_rows.begin(), merge_rows.end()); out.set_rows(merge_rows); phi::funcs::SetConstant constant_functor; constant_functor(context, out.mutable_value(), 0.0); std::unordered_map rows_to_id; for (size_t i = 0; i < merge_rows.size(); ++i) { rows_to_id[merge_rows[i]] = i; } auto blas = phi::funcs::GetBlas(context); for (auto* input : inputs) { if (input->rows().size() == 0) { continue; } auto* input_data = input->value().data(); auto& input_rows = input->rows(); for (size_t i = 0; i < input_rows.size(); i++) { size_t out_i = rows_to_id[input_rows[i]]; elementwise_add_to(&blas, static_cast(input_width), &input_data[i * input_width], &out_data[out_i * input_width]); } } size_t input_width_cast = static_cast(input_width); T count = static_cast(inputs.size()); for (size_t i = 0; i < merge_rows.size(); i++) { for (size_t j = 0; j < input_width_cast; j++) { out_data[i * input_width + j] = out_data[i * input_width + j] / count; } } } }; #ifdef PADDLE_WITH_XPU template struct MergeAdd; #endif template struct MergeAverage; template struct MergeAverage; template struct MergeAverage; template struct MergeAverage; template struct UpdateToTensor { void operator()(const phi::CPUContext& context, const ScatterOps& op, const phi::SelectedRows& input1, phi::DenseTensor* input2) { auto in1_height = input1.height(); const auto& in2_dims = input2->dims(); PADDLE_ENFORCE_EQ( in1_height, in2_dims[0], phi::errors::InvalidArgument("The two inputs height must be equal." "But received first input height = " "[%d], second input height = [%d]", in1_height, in2_dims[0])); auto& in1_value = input1.value(); auto& in1_rows = input1.rows(); int64_t in1_row_numel = in1_value.numel() / in1_rows.size(); PADDLE_ENFORCE_EQ( in1_row_numel, input2->numel() / in1_height, phi::errors::InvalidArgument( "The two inputs width must be equal." "But received first input width = [%d], second input width = [%d]", in1_row_numel, input2->numel() / in1_height)); auto* in1_data = in1_value.data(); auto* input2_data = input2->data(); // FIXME(typhoonzero): use macro fix the below messy code. switch (op) { case ScatterOps::ASSIGN: INLINE_FOR2(in1_rows.size(), in1_row_numel) input2_data[in1_rows[i] * in1_row_numel + j] = in1_data[i * in1_row_numel + j]; break; case ScatterOps::ADD: INLINE_FOR2(in1_rows.size(), in1_row_numel) input2_data[in1_rows[i] * in1_row_numel + j] += in1_data[i * in1_row_numel + j]; break; case ScatterOps::SUB: INLINE_FOR2(in1_rows.size(), in1_row_numel) input2_data[in1_rows[i] * in1_row_numel + j] -= in1_data[i * in1_row_numel + j]; break; case ScatterOps::SUBBY: INLINE_FOR2(in1_rows.size(), in1_row_numel) input2_data[in1_rows[i] * in1_row_numel + j] = in1_data[i * in1_row_numel + j] - input2_data[in1_rows[i] * in1_row_numel + j]; break; case ScatterOps::MUL: INLINE_FOR2(in1_rows.size(), in1_row_numel) input2_data[in1_rows[i] * in1_row_numel + j] *= in1_data[i * in1_row_numel + j]; break; case ScatterOps::DIV: INLINE_FOR2(in1_rows.size(), in1_row_numel) input2_data[in1_rows[i] * in1_row_numel + j] /= in1_data[i * in1_row_numel + j]; break; case ScatterOps::DIVBY: INLINE_FOR2(in1_rows.size(), in1_row_numel) input2_data[in1_rows[i] * in1_row_numel + j] = in1_data[i * in1_row_numel + j] / input2_data[in1_rows[i] * in1_row_numel + j]; break; } } }; } // namespace scatter } // namespace funcs } // namespace phi