/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "paddle/fluid/operators/jit/more/mkl/mkl.h" #include "paddle/fluid/operators/jit/refer/refer.h" #include "paddle/fluid/operators/jit/registry.h" #include "paddle/fluid/platform/cpu_info.h" #include "paddle/fluid/platform/dynload/mklml.h" namespace paddle { namespace operators { namespace jit { namespace more { namespace mkl { template <> void MatMul(const float* a, const float* b, float* c, const matmul_attr_t* attr) { platform::dynload::cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, attr->m, attr->n, attr->k, 1.f, a, attr->k, b, attr->n, 0.f, c, attr->n); } template <> void MatMul(const double* a, const double* b, double* c, const matmul_attr_t* attr) { platform::dynload::cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, attr->m, attr->n, attr->k, 1.0, a, attr->k, b, attr->n, 0.0, c, attr->n); } template <> void VMul(const float* x, const float* y, float* z, int n) { platform::dynload::vsMul(n, x, y, z); } template <> void VMul(const double* x, const double* y, double* z, int n) { platform::dynload::vdMul(n, x, y, z); } template <> void VAdd(const float* x, const float* y, float* z, int n) { platform::dynload::vsAdd(n, x, y, z); } template <> void VAdd(const double* x, const double* y, double* z, int n) { platform::dynload::vdAdd(n, x, y, z); } template <> void VScal(const float* a, const float* x, float* y, int n) { if (x == y) { platform::dynload::cblas_sscal(n, *a, y, 1); } else { refer::VScal(a, x, y, n); } } template <> void VScal(const double* a, const double* x, double* y, int n) { if (x == y) { platform::dynload::cblas_dscal(n, *a, y, 1); } else { refer::VScal(a, x, y, n); } } template <> void VExp(const float* x, float* y, int n) { platform::dynload::vsExp(n, x, y); } template <> void VExp(const double* x, double* y, int n) { platform::dynload::vdExp(n, x, y); } template <> void VSquare(const float* x, float* y, int n) { platform::dynload::vsSqr(n, x, y); } template <> void VSquare(const double* x, double* y, int n) { platform::dynload::vdSqr(n, x, y); } template <> void VCopy(const float* x, float* y, int n) { platform::dynload::cblas_scopy(n, x, 1, y, 1); } template <> void VCopy(const double* x, double* y, int n) { platform::dynload::cblas_dcopy(n, x, 1, y, 1); } template <> void VAXPY(float a, const float* x, float* y, int n) { platform::dynload::cblas_saxpy(n, a, x, 1, y, 1); } template <> void VAXPY(double a, const double* x, double* y, int n) { platform::dynload::cblas_daxpy(n, a, x, 1, y, 1); } template <> void ASum(const float* x, float* res, int n) { res[0] = platform::dynload::cblas_sasum(n, x, 1); } template <> void ASum(const double* x, double* res, int n) { res[0] = platform::dynload::cblas_dasum(n, x, 1); } // TODO(TJ): tuning me carefully on AVX, AVX2 and AVX512 template <> bool VMulKernel::UseMe(const int& d) const { return platform::MayIUse(platform::avx512f) && d > 512; } template <> bool VAddKernel::UseMe(const int& d) const { return platform::MayIUse(platform::avx) && d > 512; } template <> bool VScalKernel::UseMe(const int& d) const { return platform::MayIUse(platform::avx512f) && d > 512; } template <> bool VExpKernel::UseMe(const int& d) const { return d > 7; } template <> bool VSquareKernel::UseMe(const int& d) const { return d > 7; } template <> bool VSigmoidKernel::UseMe(const int& d) const { return d > 7; } template <> bool VTanhKernel::UseMe(const int& d) const { return d > 7; } template <> bool SeqPoolKernel::UseMe(const seq_pool_attr_t& attr) const { return true; } template <> bool SeqPoolKernel::UseMe(const seq_pool_attr_t& attr) const { return true; } template <> bool MatMulKernel::UseMe(const matmul_attr_t& attr) const { return platform::MayIUse(platform::avx); } template <> bool MatMulKernel::UseMe(const matmul_attr_t& attr) const { return true; } template <> bool SoftmaxKernel::UseMe(const int& d) const { // tuned on avx2 return platform::MayIUse(platform::avx) && d < 60; } #define AWALYS_USE_ME_WITH_DOUBLE(func) \ template <> \ bool func##Kernel::UseMe(const int& d) const { \ return true; \ } AWALYS_USE_ME_WITH_DOUBLE(VMul); AWALYS_USE_ME_WITH_DOUBLE(VAdd); AWALYS_USE_ME_WITH_DOUBLE(VScal); AWALYS_USE_ME_WITH_DOUBLE(VExp); AWALYS_USE_ME_WITH_DOUBLE(VSigmoid); AWALYS_USE_ME_WITH_DOUBLE(VTanh); AWALYS_USE_ME_WITH_DOUBLE(VSquare); AWALYS_USE_ME_WITH_DOUBLE(Softmax); #undef AWALYS_USE_ME_WITH_DOUBLE } // namespace mkl } // namespace more } // namespace jit } // namespace operators } // namespace paddle namespace mkl = paddle::operators::jit::more::mkl; #define REGISTER_MKL_KERNEL(key, func) \ REGISTER_JITKERNEL_MORE(key, mkl, mkl::func##Kernel, \ mkl::func##Kernel) REGISTER_MKL_KERNEL(kMatMul, MatMul); REGISTER_MKL_KERNEL(kVMul, VMul); REGISTER_MKL_KERNEL(kVAdd, VAdd); REGISTER_MKL_KERNEL(kVScal, VScal); REGISTER_MKL_KERNEL(kVExp, VExp); REGISTER_MKL_KERNEL(kVSquare, VSquare); REGISTER_MKL_KERNEL(kVSigmoid, VSigmoid); REGISTER_MKL_KERNEL(kVTanh, VTanh); REGISTER_MKL_KERNEL(kSeqPool, SeqPool); REGISTER_MKL_KERNEL(kSoftmax, Softmax); #undef REGISTER_MKL_KERNEL