# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import print_function import math import paddle.fluid as fluid from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear from paddle.fluid.dygraph.container import Sequential from ...download import get_weights_path_from_url __all__ = [ 'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152' ] model_urls = { 'resnet18': ('https://paddle-hapi.bj.bcebos.com/models/resnet18.pdparams', '0ba53eea9bc970962d0ef96f7b94057e'), 'resnet34': ('https://paddle-hapi.bj.bcebos.com/models/resnet34.pdparams', '46bc9f7c3dd2e55b7866285bee91eff3'), 'resnet50': ('https://paddle-hapi.bj.bcebos.com/models/resnet50.pdparams', '5ce890a9ad386df17cf7fe2313dca0a1'), 'resnet101': ('https://paddle-hapi.bj.bcebos.com/models/resnet101.pdparams', 'fb07a451df331e4b0bb861ed97c3a9b9'), 'resnet152': ('https://paddle-hapi.bj.bcebos.com/models/resnet152.pdparams', 'f9c700f26d3644bb76ad2226ed5f5713'), } class ConvBNLayer(fluid.dygraph.Layer): def __init__(self, num_channels, num_filters, filter_size, stride=1, groups=1, act=None): super(ConvBNLayer, self).__init__() self._conv = Conv2D( num_channels=num_channels, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, act=None, bias_attr=False) self._batch_norm = BatchNorm(num_filters, act=act) def forward(self, inputs): x = self._conv(inputs) x = self._batch_norm(x) return x class BasicBlock(fluid.dygraph.Layer): """residual block of resnet18 and resnet34 """ expansion = 1 def __init__(self, num_channels, num_filters, stride, shortcut=True): super(BasicBlock, self).__init__() self.conv0 = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=3, act='relu') self.conv1 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters, filter_size=3, stride=stride, act='relu') if not shortcut: self.short = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=1, stride=stride) self.shortcut = shortcut def forward(self, inputs): y = self.conv0(inputs) conv1 = self.conv1(y) if self.shortcut: short = inputs else: short = self.short(inputs) y = short + conv1 return fluid.layers.relu(y) class BottleneckBlock(fluid.dygraph.Layer): """residual block of resnet50, resnet101 amd resnet152 """ expansion = 4 def __init__(self, num_channels, num_filters, stride, shortcut=True): super(BottleneckBlock, self).__init__() self.conv0 = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=1, act='relu') self.conv1 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters, filter_size=3, stride=stride, act='relu') self.conv2 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters * self.expansion, filter_size=1, act=None) if not shortcut: self.short = ConvBNLayer( num_channels=num_channels, num_filters=num_filters * self.expansion, filter_size=1, stride=stride) self.shortcut = shortcut self._num_channels_out = num_filters * self.expansion def forward(self, inputs): x = self.conv0(inputs) conv1 = self.conv1(x) conv2 = self.conv2(conv1) if self.shortcut: short = inputs else: short = self.short(inputs) x = fluid.layers.elementwise_add(x=short, y=conv2) return fluid.layers.relu(x) class ResNet(fluid.dygraph.Layer): """ResNet model from `"Deep Residual Learning for Image Recognition" `_ Args: Block (BasicBlock|BottleneckBlock): block module of model. depth (int): layers of resnet, default: 50. num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer will not be defined. Default: 1000. with_pool (bool): use pool before the last fc layer or not. Default: True. classifier_activation (str): activation for the last fc layer. Default: 'softmax'. Examples: .. code-block:: python from paddle.incubate.hapi.vision.models import ResNet from paddle.incubate.hapi.vision.models.resnet import BottleneckBlock, BasicBlock resnet50 = ResNet(BottleneckBlock, 50) resnet18 = ResNet(BasicBlock, 18) """ def __init__(self, Block, depth=50, num_classes=1000, with_pool=True, classifier_activation='softmax'): super(ResNet, self).__init__() self.num_classes = num_classes self.with_pool = with_pool layer_config = { 18: [2, 2, 2, 2], 34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], } assert depth in layer_config.keys(), \ "supported depth are {} but input layer is {}".format( layer_config.keys(), depth) layers = layer_config[depth] in_channels = 64 out_channels = [64, 128, 256, 512] self.conv = ConvBNLayer( num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu') self.pool = Pool2D( pool_size=3, pool_stride=2, pool_padding=1, pool_type='max') self.layers = [] for idx, num_blocks in enumerate(layers): blocks = [] shortcut = False for b in range(num_blocks): if b == 1: in_channels = out_channels[idx] * Block.expansion block = Block( num_channels=in_channels, num_filters=out_channels[idx], stride=2 if b == 0 and idx != 0 else 1, shortcut=shortcut) blocks.append(block) shortcut = True layer = self.add_sublayer("layer_{}".format(idx), Sequential(*blocks)) self.layers.append(layer) if with_pool: self.global_pool = Pool2D( pool_size=7, pool_type='avg', global_pooling=True) if num_classes > 0: stdv = 1.0 / math.sqrt(out_channels[-1] * Block.expansion * 1.0) self.fc_input_dim = out_channels[-1] * Block.expansion * 1 * 1 self.fc = Linear( self.fc_input_dim, num_classes, act=classifier_activation, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv))) def forward(self, inputs): x = self.conv(inputs) x = self.pool(x) for layer in self.layers: x = layer(x) if self.with_pool: x = self.global_pool(x) if self.num_classes > -1: x = fluid.layers.reshape(x, shape=[-1, self.fc_input_dim]) x = self.fc(x) return x def _resnet(arch, Block, depth, pretrained, **kwargs): model = ResNet(Block, depth, **kwargs) if pretrained: assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format( arch) weight_path = get_weights_path_from_url(model_urls[arch][0], model_urls[arch][1]) assert weight_path.endswith( '.pdparams'), "suffix of weight must be .pdparams" param, _ = fluid.load_dygraph(weight_path) model.set_dict(param) return model def resnet18(pretrained=False, **kwargs): """ResNet 18-layer model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Examples: .. code-block:: python from paddle.incubate.hapi.vision.models import resnet18 # build model model = resnet18() # build model and load imagenet pretrained weight # model = resnet18(pretrained=True) """ return _resnet('resnet18', BasicBlock, 18, pretrained, **kwargs) def resnet34(pretrained=False, **kwargs): """ResNet 34-layer model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Examples: .. code-block:: python from paddle.incubate.hapi.vision.models import resnet34 # build model model = resnet34() # build model and load imagenet pretrained weight # model = resnet34(pretrained=True) """ return _resnet('resnet34', BasicBlock, 34, pretrained, **kwargs) def resnet50(pretrained=False, **kwargs): """ResNet 50-layer model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Examples: .. code-block:: python from paddle.incubate.hapi.vision.models import resnet50 # build model model = resnet50() # build model and load imagenet pretrained weight # model = resnet50(pretrained=True) """ return _resnet('resnet50', BottleneckBlock, 50, pretrained, **kwargs) def resnet101(pretrained=False, **kwargs): """ResNet 101-layer model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Examples: .. code-block:: python from paddle.incubate.hapi.vision.models import resnet101 # build model model = resnet101() # build model and load imagenet pretrained weight # model = resnet101(pretrained=True) """ return _resnet('resnet101', BottleneckBlock, 101, pretrained, **kwargs) def resnet152(pretrained=False, **kwargs): """ResNet 152-layer model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Examples: .. code-block:: python from paddle.incubate.hapi.vision.models import resnet152 # build model model = resnet152() # build model and load imagenet pretrained weight # model = resnet152(pretrained=True) """ return _resnet('resnet152', BottleneckBlock, 152, pretrained, **kwargs)